change chat gpt provider (#12)
4
.github/workflows/poetry-test.yml
vendored
@ -67,7 +67,11 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
cp bot_microservice/settings/.env.ci.runtests bot_microservice/settings/.env
|
cp bot_microservice/settings/.env.ci.runtests bot_microservice/settings/.env
|
||||||
docker compose run bot poetry run bash -c "coverage run -m pytest -vv --exitfirst && poetry run coverage report"
|
docker compose run bot poetry run bash -c "coverage run -m pytest -vv --exitfirst && poetry run coverage report"
|
||||||
|
#----------------------------------------------
|
||||||
|
# check dependencies
|
||||||
|
#----------------------------------------------
|
||||||
- name: Extended checks
|
- name: Extended checks
|
||||||
|
continue-on-error: true
|
||||||
run: |
|
run: |
|
||||||
poetry run poetry check
|
poetry run poetry check
|
||||||
poetry run pip check
|
poetry run pip check
|
||||||
|
11
Makefile
@ -37,12 +37,15 @@ lint-typing:
|
|||||||
lint-complexity:
|
lint-complexity:
|
||||||
flake8 $(PY_TARGET_DIRS)
|
flake8 $(PY_TARGET_DIRS)
|
||||||
|
|
||||||
## Запустить все линтеры
|
|
||||||
lint: lint-typing lint-complexity check-import-sorting
|
|
||||||
|
|
||||||
## Проверить зависимостей
|
## Проверить зависимостей
|
||||||
lint-deps:
|
lint-deps:
|
||||||
safety check --full-report && pip-audit
|
poetry run poetry check
|
||||||
|
poetry run pip check
|
||||||
|
poetry run safety check --full-report
|
||||||
|
poetry run pip-audit
|
||||||
|
|
||||||
|
## Запустить все линтеры
|
||||||
|
lint: lint-typing lint-complexity check-import-sorting lint-deps
|
||||||
|
|
||||||
## Show help
|
## Show help
|
||||||
help:
|
help:
|
||||||
|
@ -1,10 +1,9 @@
|
|||||||
from fastapi import APIRouter, Request
|
from fastapi import APIRouter, Request
|
||||||
from settings.config import get_settings
|
from settings.config import settings
|
||||||
from starlette import status
|
from starlette import status
|
||||||
from starlette.responses import Response
|
from starlette.responses import Response
|
||||||
|
|
||||||
router = APIRouter()
|
router = APIRouter()
|
||||||
settings = get_settings()
|
|
||||||
|
|
||||||
|
|
||||||
@router.post(
|
@router.post(
|
||||||
|
@ -3,7 +3,7 @@ from enum import StrEnum
|
|||||||
AUDIO_SEGMENT_DURATION = 120 * 1000
|
AUDIO_SEGMENT_DURATION = 120 * 1000
|
||||||
|
|
||||||
API_PREFIX = "/api"
|
API_PREFIX = "/api"
|
||||||
CHAT_GPT_BASE_URL = "http://chat_service:1338/backend-api/v2/conversation"
|
CHAT_GPT_BASE_URL = "http://chat_service:8858/backend-api/v2/conversation"
|
||||||
|
|
||||||
|
|
||||||
class LogLevelEnum(StrEnum):
|
class LogLevelEnum(StrEnum):
|
||||||
|
@ -8,6 +8,7 @@ from constants import CHAT_GPT_BASE_URL
|
|||||||
from core.utils import SpeechToTextService
|
from core.utils import SpeechToTextService
|
||||||
from httpx import AsyncClient, AsyncHTTPTransport
|
from httpx import AsyncClient, AsyncHTTPTransport
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
|
from settings.config import settings
|
||||||
from telegram import Update
|
from telegram import Update
|
||||||
from telegram.ext import ContextTypes
|
from telegram.ext import ContextTypes
|
||||||
|
|
||||||
@ -33,7 +34,7 @@ async def ask_question(update: Update, context: ContextTypes.DEFAULT_TYPE) -> No
|
|||||||
chat_gpt_request = {
|
chat_gpt_request = {
|
||||||
"conversation_id": str(uuid4()),
|
"conversation_id": str(uuid4()),
|
||||||
"action": "_ask",
|
"action": "_ask",
|
||||||
"model": "gpt-3.5-turbo",
|
"model": settings.GPT_MODEL,
|
||||||
"jailbreak": "default",
|
"jailbreak": "default",
|
||||||
"meta": {
|
"meta": {
|
||||||
"id": random.randint(10**18, 10**19 - 1), # noqa: S311
|
"id": random.randint(10**18, 10**19 - 1), # noqa: S311
|
||||||
|
@ -6,7 +6,7 @@ from typing import TYPE_CHECKING, Any, cast
|
|||||||
from constants import LogLevelEnum
|
from constants import LogLevelEnum
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
from sentry_sdk.integrations.logging import EventHandler
|
from sentry_sdk.integrations.logging import EventHandler
|
||||||
from settings.config import get_settings
|
from settings.config import settings
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from loguru import Record
|
from loguru import Record
|
||||||
@ -14,9 +14,6 @@ else:
|
|||||||
Record = dict[str, Any]
|
Record = dict[str, Any]
|
||||||
|
|
||||||
|
|
||||||
settings = get_settings()
|
|
||||||
|
|
||||||
|
|
||||||
class InterceptHandler(logging.Handler):
|
class InterceptHandler(logging.Handler):
|
||||||
def emit(self, record: logging.LogRecord) -> None:
|
def emit(self, record: logging.LogRecord) -> None:
|
||||||
# Get corresponding Loguru level if it exists
|
# Get corresponding Loguru level if it exists
|
||||||
|
@ -2,9 +2,7 @@ from api.bot.controllers import router as bot_router
|
|||||||
from api.system.controllers import router as system_router
|
from api.system.controllers import router as system_router
|
||||||
from fastapi import APIRouter
|
from fastapi import APIRouter
|
||||||
from fastapi.responses import ORJSONResponse
|
from fastapi.responses import ORJSONResponse
|
||||||
from settings.config import get_settings
|
from settings.config import settings
|
||||||
|
|
||||||
settings = get_settings()
|
|
||||||
|
|
||||||
api_router = APIRouter(
|
api_router = APIRouter(
|
||||||
prefix=settings.api_prefix,
|
prefix=settings.api_prefix,
|
||||||
|
@ -47,6 +47,7 @@ class AppSettings(SentrySettings, BaseSettings):
|
|||||||
DOMAIN: str = "https://localhost"
|
DOMAIN: str = "https://localhost"
|
||||||
URL_PREFIX: str = ""
|
URL_PREFIX: str = ""
|
||||||
|
|
||||||
|
GPT_MODEL: str = "gpt-3.5-turbo-stream-AItianhuSpace"
|
||||||
# quantity of workers for uvicorn
|
# quantity of workers for uvicorn
|
||||||
WORKERS_COUNT: int = 1
|
WORKERS_COUNT: int = 1
|
||||||
# Enable uvicorn reloading
|
# Enable uvicorn reloading
|
||||||
@ -74,3 +75,6 @@ class AppSettings(SentrySettings, BaseSettings):
|
|||||||
|
|
||||||
def get_settings() -> AppSettings:
|
def get_settings() -> AppSettings:
|
||||||
return AppSettings()
|
return AppSettings()
|
||||||
|
|
||||||
|
|
||||||
|
settings = get_settings()
|
||||||
|
101
chat_gpt_microservice/.clang-format
Normal file
@ -0,0 +1,101 @@
|
|||||||
|
---
|
||||||
|
Language: Cpp
|
||||||
|
# BasedOnStyle: Google
|
||||||
|
AccessModifierOffset: -4
|
||||||
|
AlignAfterOpenBracket: Align
|
||||||
|
AlignConsecutiveAssignments: false
|
||||||
|
AlignConsecutiveDeclarations: false
|
||||||
|
AlignEscapedNewlinesLeft: true
|
||||||
|
AlignOperands: true
|
||||||
|
AlignTrailingComments: true
|
||||||
|
AllowAllParametersOfDeclarationOnNextLine: true
|
||||||
|
AllowShortBlocksOnASingleLine: false
|
||||||
|
AllowShortCaseLabelsOnASingleLine: false
|
||||||
|
AllowShortFunctionsOnASingleLine: All
|
||||||
|
AllowShortIfStatementsOnASingleLine: false
|
||||||
|
AllowShortLoopsOnASingleLine: false
|
||||||
|
AlwaysBreakAfterDefinitionReturnType: None
|
||||||
|
AlwaysBreakAfterReturnType: None
|
||||||
|
AlwaysBreakBeforeMultilineStrings: true
|
||||||
|
AlwaysBreakTemplateDeclarations: true
|
||||||
|
BinPackArguments: true
|
||||||
|
BinPackParameters: true
|
||||||
|
BraceWrapping:
|
||||||
|
AfterClass: false
|
||||||
|
AfterControlStatement: false
|
||||||
|
AfterEnum: false
|
||||||
|
AfterFunction: false
|
||||||
|
AfterNamespace: false
|
||||||
|
AfterObjCDeclaration: false
|
||||||
|
AfterStruct: false
|
||||||
|
AfterUnion: false
|
||||||
|
BeforeCatch: false
|
||||||
|
BeforeElse: false
|
||||||
|
IndentBraces: false
|
||||||
|
BreakBeforeBinaryOperators: None
|
||||||
|
BreakBeforeBraces: Attach
|
||||||
|
BreakBeforeTernaryOperators: true
|
||||||
|
BreakConstructorInitializersBeforeComma: false
|
||||||
|
BreakAfterJavaFieldAnnotations: false
|
||||||
|
BreakStringLiterals: true
|
||||||
|
ColumnLimit: 119
|
||||||
|
CommentPragmas: '^ IWYU pragma:'
|
||||||
|
ConstructorInitializerAllOnOneLineOrOnePerLine: true
|
||||||
|
ConstructorInitializerIndentWidth: 4
|
||||||
|
ContinuationIndentWidth: 4
|
||||||
|
Cpp11BracedListStyle: true
|
||||||
|
DerivePointerAlignment: true
|
||||||
|
DisableFormat: false
|
||||||
|
ExperimentalAutoDetectBinPacking: false
|
||||||
|
ForEachMacros: [ foreach, Q_FOREACH, BOOST_FOREACH ]
|
||||||
|
IncludeCategories:
|
||||||
|
- Regex: '^<.*\.h>'
|
||||||
|
Priority: 1
|
||||||
|
- Regex: '^<.*'
|
||||||
|
Priority: 2
|
||||||
|
- Regex: '.*'
|
||||||
|
Priority: 3
|
||||||
|
IncludeIsMainRegex: '([-_](test|unittest))?$'
|
||||||
|
IndentCaseLabels: true
|
||||||
|
IndentWidth: 4
|
||||||
|
IndentWrappedFunctionNames: false
|
||||||
|
JavaScriptQuotes: Leave
|
||||||
|
JavaScriptWrapImports: true
|
||||||
|
KeepEmptyLinesAtTheStartOfBlocks: false
|
||||||
|
MacroBlockBegin: ''
|
||||||
|
MacroBlockEnd: ''
|
||||||
|
MaxEmptyLinesToKeep: 1
|
||||||
|
NamespaceIndentation: None
|
||||||
|
ObjCBlockIndentWidth: 4
|
||||||
|
ObjCSpaceAfterProperty: false
|
||||||
|
ObjCSpaceBeforeProtocolList: false
|
||||||
|
PenaltyBreakBeforeFirstCallParameter: 1
|
||||||
|
PenaltyBreakComment: 300
|
||||||
|
PenaltyBreakFirstLessLess: 120
|
||||||
|
PenaltyBreakString: 1000
|
||||||
|
PenaltyExcessCharacter: 1000000
|
||||||
|
PenaltyReturnTypeOnItsOwnLine: 200
|
||||||
|
PointerAlignment: Left
|
||||||
|
ReflowComments: true
|
||||||
|
SortIncludes: true
|
||||||
|
SpaceAfterCStyleCast: false
|
||||||
|
SpaceBeforeAssignmentOperators: true
|
||||||
|
SpaceBeforeParens: ControlStatements
|
||||||
|
SpaceInEmptyParentheses: false
|
||||||
|
SpacesBeforeTrailingComments: 2
|
||||||
|
SpacesInAngles: false
|
||||||
|
SpacesInContainerLiterals: true
|
||||||
|
SpacesInCStyleCastParentheses: false
|
||||||
|
SpacesInParentheses: false
|
||||||
|
SpacesInSquareBrackets: false
|
||||||
|
Standard: c++20
|
||||||
|
TabWidth: 8
|
||||||
|
UseTab: Never
|
||||||
|
...
|
||||||
|
|
||||||
|
---
|
||||||
|
Language: JavaScript
|
||||||
|
DisableFormat: true
|
||||||
|
---
|
||||||
|
Language: Json
|
||||||
|
DisableFormat: true
|
69
chat_gpt_microservice/.github/workflows/ubuntu-gcc13.yaml
vendored
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
name: ubuntu-gcc13
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches: ["main", "dev"]
|
||||||
|
pull_request:
|
||||||
|
branches: ["main"]
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build:
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-22.04]
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Installation
|
||||||
|
run: |
|
||||||
|
sudo apt-get update
|
||||||
|
sudo apt-get install -y libgl1-mesa-dev libglu1-mesa-dev p7zip gobjc g++-13 wget sudo libcurl4-openssl-dev libnss3 nss-plugin-pem ca-certificates
|
||||||
|
wget https://github.com/lwthiker/curl-impersonate/releases/download/v0.5.4/libcurl-impersonate-v0.5.4.x86_64-linux-gnu.tar.gz
|
||||||
|
sudo mv libcurl-impersonate-v0.5.4.x86_64-linux-gnu.tar.gz /usr/lib64
|
||||||
|
cd /usr/lib64
|
||||||
|
sudo tar -xvf libcurl-impersonate-v0.5.4.x86_64-linux-gnu.tar.gz
|
||||||
|
cd -
|
||||||
|
wget https://github.com/xmake-io/xmake/releases/download/v2.8.2/xmake-v2.8.2.xz.run
|
||||||
|
chmod 777 xmake-v2.8.2.xz.run
|
||||||
|
./xmake-v2.8.2.xz.run > a.txt
|
||||||
|
|
||||||
|
- name: checkout
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
- name: build
|
||||||
|
run: |
|
||||||
|
export XMAKE_ROOT="y"
|
||||||
|
source ~/.xmake/profile
|
||||||
|
g++-13 -v
|
||||||
|
export LD_LIBRARY_PATH=/usr/lib64:$LD_LIBRARY_PATH
|
||||||
|
export LIBRARY_PATH=/usr/lib64:$LIBRARY_PATH
|
||||||
|
export CXX=g++-13
|
||||||
|
export CC=gcc-13
|
||||||
|
xmake build -y
|
||||||
|
xmake install -o .
|
||||||
|
ldd ./bin/cpp-freegpt-webui
|
||||||
|
|
||||||
|
- name: Docker login
|
||||||
|
if: github.ref_name == 'dev' || github.ref_name == 'main'
|
||||||
|
uses: docker/login-action@v1
|
||||||
|
with:
|
||||||
|
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||||
|
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||||
|
|
||||||
|
- name: Build the Docker image to dev
|
||||||
|
if: github.ref_name == 'dev'
|
||||||
|
run: |
|
||||||
|
docker build . -t ${{ secrets.DOCKERHUB_USERNAME }}/freegpt:dev
|
||||||
|
|
||||||
|
- name: Build the Docker image to main
|
||||||
|
if: github.ref_name == 'main'
|
||||||
|
run: |
|
||||||
|
docker build . -t ${{ secrets.DOCKERHUB_USERNAME }}/freegpt:latest
|
||||||
|
|
||||||
|
- name: Docker image push to dev
|
||||||
|
if: github.ref_name == 'dev'
|
||||||
|
run: docker push ${{ secrets.DOCKERHUB_USERNAME }}/freegpt:dev
|
||||||
|
|
||||||
|
- name: Docker image push main
|
||||||
|
if: github.ref_name == 'main'
|
||||||
|
run: docker push ${{ secrets.DOCKERHUB_USERNAME }}/freegpt:latest
|
28
chat_gpt_microservice/Dockerfile
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
FROM ubuntu:23.04
|
||||||
|
|
||||||
|
#use --build-arg LIB_DIR=/usr/lib for arm64 cpus
|
||||||
|
ARG LIB_DIR=/usr/lib64
|
||||||
|
|
||||||
|
ENV LD_LIBRARY_PATH=$LIB_DIR:$LD_LIBRARY_PATH
|
||||||
|
ENV LIBRARY_PATH=$LIB_DIR:$LIBRARY_PATH
|
||||||
|
|
||||||
|
RUN apt-get update -y
|
||||||
|
RUN apt-get install -y libcurl4-openssl-dev wget libnss3 nss-plugin-pem ca-certificates
|
||||||
|
# RUN strings /lib/$(arch)-linux-gnu/libstdc++.so.6 | grep GLIBCXX_3.4
|
||||||
|
|
||||||
|
RUN wget https://github.com/lwthiker/curl-impersonate/releases/download/v0.5.4/libcurl-impersonate-v0.5.4.$(arch)-linux-gnu.tar.gz
|
||||||
|
RUN mv libcurl-impersonate-v0.5.4.$(arch)-linux-gnu.tar.gz $LIB_DIR
|
||||||
|
RUN cd $LIB_DIR && tar -xvf libcurl-impersonate-v0.5.4.$(arch)-linux-gnu.tar.gz && rm -rf libcurl-impersonate-v0.5.4.$(arch)-linux-gnu.tar.gz
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
ADD bin /app/bin
|
||||||
|
ADD cfg /app/cfg
|
||||||
|
ADD client /app/client
|
||||||
|
|
||||||
|
RUN ls /app/bin
|
||||||
|
RUN ls /app/cfg
|
||||||
|
|
||||||
|
WORKDIR /app/bin
|
||||||
|
|
||||||
|
ENTRYPOINT ["sh", "-c", "./cpp-freegpt-webui ../cfg/cpp-free-gpt.yml"]
|
674
chat_gpt_microservice/LICENSE
Normal file
@ -0,0 +1,674 @@
|
|||||||
|
GNU GENERAL PUBLIC LICENSE
|
||||||
|
Version 3, 29 June 2007
|
||||||
|
|
||||||
|
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies
|
||||||
|
of this license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
Preamble
|
||||||
|
|
||||||
|
The GNU General Public License is a free, copyleft license for
|
||||||
|
software and other kinds of works.
|
||||||
|
|
||||||
|
The licenses for most software and other practical works are designed
|
||||||
|
to take away your freedom to share and change the works. By contrast,
|
||||||
|
the GNU General Public License is intended to guarantee your freedom to
|
||||||
|
share and change all versions of a program--to make sure it remains free
|
||||||
|
software for all its users. We, the Free Software Foundation, use the
|
||||||
|
GNU General Public License for most of our software; it applies also to
|
||||||
|
any other work released this way by its authors. You can apply it to
|
||||||
|
your programs, too.
|
||||||
|
|
||||||
|
When we speak of free software, we are referring to freedom, not
|
||||||
|
price. Our General Public Licenses are designed to make sure that you
|
||||||
|
have the freedom to distribute copies of free software (and charge for
|
||||||
|
them if you wish), that you receive source code or can get it if you
|
||||||
|
want it, that you can change the software or use pieces of it in new
|
||||||
|
free programs, and that you know you can do these things.
|
||||||
|
|
||||||
|
To protect your rights, we need to prevent others from denying you
|
||||||
|
these rights or asking you to surrender the rights. Therefore, you have
|
||||||
|
certain responsibilities if you distribute copies of the software, or if
|
||||||
|
you modify it: responsibilities to respect the freedom of others.
|
||||||
|
|
||||||
|
For example, if you distribute copies of such a program, whether
|
||||||
|
gratis or for a fee, you must pass on to the recipients the same
|
||||||
|
freedoms that you received. You must make sure that they, too, receive
|
||||||
|
or can get the source code. And you must show them these terms so they
|
||||||
|
know their rights.
|
||||||
|
|
||||||
|
Developers that use the GNU GPL protect your rights with two steps:
|
||||||
|
(1) assert copyright on the software, and (2) offer you this License
|
||||||
|
giving you legal permission to copy, distribute and/or modify it.
|
||||||
|
|
||||||
|
For the developers' and authors' protection, the GPL clearly explains
|
||||||
|
that there is no warranty for this free software. For both users' and
|
||||||
|
authors' sake, the GPL requires that modified versions be marked as
|
||||||
|
changed, so that their problems will not be attributed erroneously to
|
||||||
|
authors of previous versions.
|
||||||
|
|
||||||
|
Some devices are designed to deny users access to install or run
|
||||||
|
modified versions of the software inside them, although the manufacturer
|
||||||
|
can do so. This is fundamentally incompatible with the aim of
|
||||||
|
protecting users' freedom to change the software. The systematic
|
||||||
|
pattern of such abuse occurs in the area of products for individuals to
|
||||||
|
use, which is precisely where it is most unacceptable. Therefore, we
|
||||||
|
have designed this version of the GPL to prohibit the practice for those
|
||||||
|
products. If such problems arise substantially in other domains, we
|
||||||
|
stand ready to extend this provision to those domains in future versions
|
||||||
|
of the GPL, as needed to protect the freedom of users.
|
||||||
|
|
||||||
|
Finally, every program is threatened constantly by software patents.
|
||||||
|
States should not allow patents to restrict development and use of
|
||||||
|
software on general-purpose computers, but in those that do, we wish to
|
||||||
|
avoid the special danger that patents applied to a free program could
|
||||||
|
make it effectively proprietary. To prevent this, the GPL assures that
|
||||||
|
patents cannot be used to render the program non-free.
|
||||||
|
|
||||||
|
The precise terms and conditions for copying, distribution and
|
||||||
|
modification follow.
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
0. Definitions.
|
||||||
|
|
||||||
|
"This License" refers to version 3 of the GNU General Public License.
|
||||||
|
|
||||||
|
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||||
|
works, such as semiconductor masks.
|
||||||
|
|
||||||
|
"The Program" refers to any copyrightable work licensed under this
|
||||||
|
License. Each licensee is addressed as "you". "Licensees" and
|
||||||
|
"recipients" may be individuals or organizations.
|
||||||
|
|
||||||
|
To "modify" a work means to copy from or adapt all or part of the work
|
||||||
|
in a fashion requiring copyright permission, other than the making of an
|
||||||
|
exact copy. The resulting work is called a "modified version" of the
|
||||||
|
earlier work or a work "based on" the earlier work.
|
||||||
|
|
||||||
|
A "covered work" means either the unmodified Program or a work based
|
||||||
|
on the Program.
|
||||||
|
|
||||||
|
To "propagate" a work means to do anything with it that, without
|
||||||
|
permission, would make you directly or secondarily liable for
|
||||||
|
infringement under applicable copyright law, except executing it on a
|
||||||
|
computer or modifying a private copy. Propagation includes copying,
|
||||||
|
distribution (with or without modification), making available to the
|
||||||
|
public, and in some countries other activities as well.
|
||||||
|
|
||||||
|
To "convey" a work means any kind of propagation that enables other
|
||||||
|
parties to make or receive copies. Mere interaction with a user through
|
||||||
|
a computer network, with no transfer of a copy, is not conveying.
|
||||||
|
|
||||||
|
An interactive user interface displays "Appropriate Legal Notices"
|
||||||
|
to the extent that it includes a convenient and prominently visible
|
||||||
|
feature that (1) displays an appropriate copyright notice, and (2)
|
||||||
|
tells the user that there is no warranty for the work (except to the
|
||||||
|
extent that warranties are provided), that licensees may convey the
|
||||||
|
work under this License, and how to view a copy of this License. If
|
||||||
|
the interface presents a list of user commands or options, such as a
|
||||||
|
menu, a prominent item in the list meets this criterion.
|
||||||
|
|
||||||
|
1. Source Code.
|
||||||
|
|
||||||
|
The "source code" for a work means the preferred form of the work
|
||||||
|
for making modifications to it. "Object code" means any non-source
|
||||||
|
form of a work.
|
||||||
|
|
||||||
|
A "Standard Interface" means an interface that either is an official
|
||||||
|
standard defined by a recognized standards body, or, in the case of
|
||||||
|
interfaces specified for a particular programming language, one that
|
||||||
|
is widely used among developers working in that language.
|
||||||
|
|
||||||
|
The "System Libraries" of an executable work include anything, other
|
||||||
|
than the work as a whole, that (a) is included in the normal form of
|
||||||
|
packaging a Major Component, but which is not part of that Major
|
||||||
|
Component, and (b) serves only to enable use of the work with that
|
||||||
|
Major Component, or to implement a Standard Interface for which an
|
||||||
|
implementation is available to the public in source code form. A
|
||||||
|
"Major Component", in this context, means a major essential component
|
||||||
|
(kernel, window system, and so on) of the specific operating system
|
||||||
|
(if any) on which the executable work runs, or a compiler used to
|
||||||
|
produce the work, or an object code interpreter used to run it.
|
||||||
|
|
||||||
|
The "Corresponding Source" for a work in object code form means all
|
||||||
|
the source code needed to generate, install, and (for an executable
|
||||||
|
work) run the object code and to modify the work, including scripts to
|
||||||
|
control those activities. However, it does not include the work's
|
||||||
|
System Libraries, or general-purpose tools or generally available free
|
||||||
|
programs which are used unmodified in performing those activities but
|
||||||
|
which are not part of the work. For example, Corresponding Source
|
||||||
|
includes interface definition files associated with source files for
|
||||||
|
the work, and the source code for shared libraries and dynamically
|
||||||
|
linked subprograms that the work is specifically designed to require,
|
||||||
|
such as by intimate data communication or control flow between those
|
||||||
|
subprograms and other parts of the work.
|
||||||
|
|
||||||
|
The Corresponding Source need not include anything that users
|
||||||
|
can regenerate automatically from other parts of the Corresponding
|
||||||
|
Source.
|
||||||
|
|
||||||
|
The Corresponding Source for a work in source code form is that
|
||||||
|
same work.
|
||||||
|
|
||||||
|
2. Basic Permissions.
|
||||||
|
|
||||||
|
All rights granted under this License are granted for the term of
|
||||||
|
copyright on the Program, and are irrevocable provided the stated
|
||||||
|
conditions are met. This License explicitly affirms your unlimited
|
||||||
|
permission to run the unmodified Program. The output from running a
|
||||||
|
covered work is covered by this License only if the output, given its
|
||||||
|
content, constitutes a covered work. This License acknowledges your
|
||||||
|
rights of fair use or other equivalent, as provided by copyright law.
|
||||||
|
|
||||||
|
You may make, run and propagate covered works that you do not
|
||||||
|
convey, without conditions so long as your license otherwise remains
|
||||||
|
in force. You may convey covered works to others for the sole purpose
|
||||||
|
of having them make modifications exclusively for you, or provide you
|
||||||
|
with facilities for running those works, provided that you comply with
|
||||||
|
the terms of this License in conveying all material for which you do
|
||||||
|
not control copyright. Those thus making or running the covered works
|
||||||
|
for you must do so exclusively on your behalf, under your direction
|
||||||
|
and control, on terms that prohibit them from making any copies of
|
||||||
|
your copyrighted material outside their relationship with you.
|
||||||
|
|
||||||
|
Conveying under any other circumstances is permitted solely under
|
||||||
|
the conditions stated below. Sublicensing is not allowed; section 10
|
||||||
|
makes it unnecessary.
|
||||||
|
|
||||||
|
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||||
|
|
||||||
|
No covered work shall be deemed part of an effective technological
|
||||||
|
measure under any applicable law fulfilling obligations under article
|
||||||
|
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||||
|
similar laws prohibiting or restricting circumvention of such
|
||||||
|
measures.
|
||||||
|
|
||||||
|
When you convey a covered work, you waive any legal power to forbid
|
||||||
|
circumvention of technological measures to the extent such circumvention
|
||||||
|
is effected by exercising rights under this License with respect to
|
||||||
|
the covered work, and you disclaim any intention to limit operation or
|
||||||
|
modification of the work as a means of enforcing, against the work's
|
||||||
|
users, your or third parties' legal rights to forbid circumvention of
|
||||||
|
technological measures.
|
||||||
|
|
||||||
|
4. Conveying Verbatim Copies.
|
||||||
|
|
||||||
|
You may convey verbatim copies of the Program's source code as you
|
||||||
|
receive it, in any medium, provided that you conspicuously and
|
||||||
|
appropriately publish on each copy an appropriate copyright notice;
|
||||||
|
keep intact all notices stating that this License and any
|
||||||
|
non-permissive terms added in accord with section 7 apply to the code;
|
||||||
|
keep intact all notices of the absence of any warranty; and give all
|
||||||
|
recipients a copy of this License along with the Program.
|
||||||
|
|
||||||
|
You may charge any price or no price for each copy that you convey,
|
||||||
|
and you may offer support or warranty protection for a fee.
|
||||||
|
|
||||||
|
5. Conveying Modified Source Versions.
|
||||||
|
|
||||||
|
You may convey a work based on the Program, or the modifications to
|
||||||
|
produce it from the Program, in the form of source code under the
|
||||||
|
terms of section 4, provided that you also meet all of these conditions:
|
||||||
|
|
||||||
|
a) The work must carry prominent notices stating that you modified
|
||||||
|
it, and giving a relevant date.
|
||||||
|
|
||||||
|
b) The work must carry prominent notices stating that it is
|
||||||
|
released under this License and any conditions added under section
|
||||||
|
7. This requirement modifies the requirement in section 4 to
|
||||||
|
"keep intact all notices".
|
||||||
|
|
||||||
|
c) You must license the entire work, as a whole, under this
|
||||||
|
License to anyone who comes into possession of a copy. This
|
||||||
|
License will therefore apply, along with any applicable section 7
|
||||||
|
additional terms, to the whole of the work, and all its parts,
|
||||||
|
regardless of how they are packaged. This License gives no
|
||||||
|
permission to license the work in any other way, but it does not
|
||||||
|
invalidate such permission if you have separately received it.
|
||||||
|
|
||||||
|
d) If the work has interactive user interfaces, each must display
|
||||||
|
Appropriate Legal Notices; however, if the Program has interactive
|
||||||
|
interfaces that do not display Appropriate Legal Notices, your
|
||||||
|
work need not make them do so.
|
||||||
|
|
||||||
|
A compilation of a covered work with other separate and independent
|
||||||
|
works, which are not by their nature extensions of the covered work,
|
||||||
|
and which are not combined with it such as to form a larger program,
|
||||||
|
in or on a volume of a storage or distribution medium, is called an
|
||||||
|
"aggregate" if the compilation and its resulting copyright are not
|
||||||
|
used to limit the access or legal rights of the compilation's users
|
||||||
|
beyond what the individual works permit. Inclusion of a covered work
|
||||||
|
in an aggregate does not cause this License to apply to the other
|
||||||
|
parts of the aggregate.
|
||||||
|
|
||||||
|
6. Conveying Non-Source Forms.
|
||||||
|
|
||||||
|
You may convey a covered work in object code form under the terms
|
||||||
|
of sections 4 and 5, provided that you also convey the
|
||||||
|
machine-readable Corresponding Source under the terms of this License,
|
||||||
|
in one of these ways:
|
||||||
|
|
||||||
|
a) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by the
|
||||||
|
Corresponding Source fixed on a durable physical medium
|
||||||
|
customarily used for software interchange.
|
||||||
|
|
||||||
|
b) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by a
|
||||||
|
written offer, valid for at least three years and valid for as
|
||||||
|
long as you offer spare parts or customer support for that product
|
||||||
|
model, to give anyone who possesses the object code either (1) a
|
||||||
|
copy of the Corresponding Source for all the software in the
|
||||||
|
product that is covered by this License, on a durable physical
|
||||||
|
medium customarily used for software interchange, for a price no
|
||||||
|
more than your reasonable cost of physically performing this
|
||||||
|
conveying of source, or (2) access to copy the
|
||||||
|
Corresponding Source from a network server at no charge.
|
||||||
|
|
||||||
|
c) Convey individual copies of the object code with a copy of the
|
||||||
|
written offer to provide the Corresponding Source. This
|
||||||
|
alternative is allowed only occasionally and noncommercially, and
|
||||||
|
only if you received the object code with such an offer, in accord
|
||||||
|
with subsection 6b.
|
||||||
|
|
||||||
|
d) Convey the object code by offering access from a designated
|
||||||
|
place (gratis or for a charge), and offer equivalent access to the
|
||||||
|
Corresponding Source in the same way through the same place at no
|
||||||
|
further charge. You need not require recipients to copy the
|
||||||
|
Corresponding Source along with the object code. If the place to
|
||||||
|
copy the object code is a network server, the Corresponding Source
|
||||||
|
may be on a different server (operated by you or a third party)
|
||||||
|
that supports equivalent copying facilities, provided you maintain
|
||||||
|
clear directions next to the object code saying where to find the
|
||||||
|
Corresponding Source. Regardless of what server hosts the
|
||||||
|
Corresponding Source, you remain obligated to ensure that it is
|
||||||
|
available for as long as needed to satisfy these requirements.
|
||||||
|
|
||||||
|
e) Convey the object code using peer-to-peer transmission, provided
|
||||||
|
you inform other peers where the object code and Corresponding
|
||||||
|
Source of the work are being offered to the general public at no
|
||||||
|
charge under subsection 6d.
|
||||||
|
|
||||||
|
A separable portion of the object code, whose source code is excluded
|
||||||
|
from the Corresponding Source as a System Library, need not be
|
||||||
|
included in conveying the object code work.
|
||||||
|
|
||||||
|
A "User Product" is either (1) a "consumer product", which means any
|
||||||
|
tangible personal property which is normally used for personal, family,
|
||||||
|
or household purposes, or (2) anything designed or sold for incorporation
|
||||||
|
into a dwelling. In determining whether a product is a consumer product,
|
||||||
|
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||||
|
product received by a particular user, "normally used" refers to a
|
||||||
|
typical or common use of that class of product, regardless of the status
|
||||||
|
of the particular user or of the way in which the particular user
|
||||||
|
actually uses, or expects or is expected to use, the product. A product
|
||||||
|
is a consumer product regardless of whether the product has substantial
|
||||||
|
commercial, industrial or non-consumer uses, unless such uses represent
|
||||||
|
the only significant mode of use of the product.
|
||||||
|
|
||||||
|
"Installation Information" for a User Product means any methods,
|
||||||
|
procedures, authorization keys, or other information required to install
|
||||||
|
and execute modified versions of a covered work in that User Product from
|
||||||
|
a modified version of its Corresponding Source. The information must
|
||||||
|
suffice to ensure that the continued functioning of the modified object
|
||||||
|
code is in no case prevented or interfered with solely because
|
||||||
|
modification has been made.
|
||||||
|
|
||||||
|
If you convey an object code work under this section in, or with, or
|
||||||
|
specifically for use in, a User Product, and the conveying occurs as
|
||||||
|
part of a transaction in which the right of possession and use of the
|
||||||
|
User Product is transferred to the recipient in perpetuity or for a
|
||||||
|
fixed term (regardless of how the transaction is characterized), the
|
||||||
|
Corresponding Source conveyed under this section must be accompanied
|
||||||
|
by the Installation Information. But this requirement does not apply
|
||||||
|
if neither you nor any third party retains the ability to install
|
||||||
|
modified object code on the User Product (for example, the work has
|
||||||
|
been installed in ROM).
|
||||||
|
|
||||||
|
The requirement to provide Installation Information does not include a
|
||||||
|
requirement to continue to provide support service, warranty, or updates
|
||||||
|
for a work that has been modified or installed by the recipient, or for
|
||||||
|
the User Product in which it has been modified or installed. Access to a
|
||||||
|
network may be denied when the modification itself materially and
|
||||||
|
adversely affects the operation of the network or violates the rules and
|
||||||
|
protocols for communication across the network.
|
||||||
|
|
||||||
|
Corresponding Source conveyed, and Installation Information provided,
|
||||||
|
in accord with this section must be in a format that is publicly
|
||||||
|
documented (and with an implementation available to the public in
|
||||||
|
source code form), and must require no special password or key for
|
||||||
|
unpacking, reading or copying.
|
||||||
|
|
||||||
|
7. Additional Terms.
|
||||||
|
|
||||||
|
"Additional permissions" are terms that supplement the terms of this
|
||||||
|
License by making exceptions from one or more of its conditions.
|
||||||
|
Additional permissions that are applicable to the entire Program shall
|
||||||
|
be treated as though they were included in this License, to the extent
|
||||||
|
that they are valid under applicable law. If additional permissions
|
||||||
|
apply only to part of the Program, that part may be used separately
|
||||||
|
under those permissions, but the entire Program remains governed by
|
||||||
|
this License without regard to the additional permissions.
|
||||||
|
|
||||||
|
When you convey a copy of a covered work, you may at your option
|
||||||
|
remove any additional permissions from that copy, or from any part of
|
||||||
|
it. (Additional permissions may be written to require their own
|
||||||
|
removal in certain cases when you modify the work.) You may place
|
||||||
|
additional permissions on material, added by you to a covered work,
|
||||||
|
for which you have or can give appropriate copyright permission.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, for material you
|
||||||
|
add to a covered work, you may (if authorized by the copyright holders of
|
||||||
|
that material) supplement the terms of this License with terms:
|
||||||
|
|
||||||
|
a) Disclaiming warranty or limiting liability differently from the
|
||||||
|
terms of sections 15 and 16 of this License; or
|
||||||
|
|
||||||
|
b) Requiring preservation of specified reasonable legal notices or
|
||||||
|
author attributions in that material or in the Appropriate Legal
|
||||||
|
Notices displayed by works containing it; or
|
||||||
|
|
||||||
|
c) Prohibiting misrepresentation of the origin of that material, or
|
||||||
|
requiring that modified versions of such material be marked in
|
||||||
|
reasonable ways as different from the original version; or
|
||||||
|
|
||||||
|
d) Limiting the use for publicity purposes of names of licensors or
|
||||||
|
authors of the material; or
|
||||||
|
|
||||||
|
e) Declining to grant rights under trademark law for use of some
|
||||||
|
trade names, trademarks, or service marks; or
|
||||||
|
|
||||||
|
f) Requiring indemnification of licensors and authors of that
|
||||||
|
material by anyone who conveys the material (or modified versions of
|
||||||
|
it) with contractual assumptions of liability to the recipient, for
|
||||||
|
any liability that these contractual assumptions directly impose on
|
||||||
|
those licensors and authors.
|
||||||
|
|
||||||
|
All other non-permissive additional terms are considered "further
|
||||||
|
restrictions" within the meaning of section 10. If the Program as you
|
||||||
|
received it, or any part of it, contains a notice stating that it is
|
||||||
|
governed by this License along with a term that is a further
|
||||||
|
restriction, you may remove that term. If a license document contains
|
||||||
|
a further restriction but permits relicensing or conveying under this
|
||||||
|
License, you may add to a covered work material governed by the terms
|
||||||
|
of that license document, provided that the further restriction does
|
||||||
|
not survive such relicensing or conveying.
|
||||||
|
|
||||||
|
If you add terms to a covered work in accord with this section, you
|
||||||
|
must place, in the relevant source files, a statement of the
|
||||||
|
additional terms that apply to those files, or a notice indicating
|
||||||
|
where to find the applicable terms.
|
||||||
|
|
||||||
|
Additional terms, permissive or non-permissive, may be stated in the
|
||||||
|
form of a separately written license, or stated as exceptions;
|
||||||
|
the above requirements apply either way.
|
||||||
|
|
||||||
|
8. Termination.
|
||||||
|
|
||||||
|
You may not propagate or modify a covered work except as expressly
|
||||||
|
provided under this License. Any attempt otherwise to propagate or
|
||||||
|
modify it is void, and will automatically terminate your rights under
|
||||||
|
this License (including any patent licenses granted under the third
|
||||||
|
paragraph of section 11).
|
||||||
|
|
||||||
|
However, if you cease all violation of this License, then your
|
||||||
|
license from a particular copyright holder is reinstated (a)
|
||||||
|
provisionally, unless and until the copyright holder explicitly and
|
||||||
|
finally terminates your license, and (b) permanently, if the copyright
|
||||||
|
holder fails to notify you of the violation by some reasonable means
|
||||||
|
prior to 60 days after the cessation.
|
||||||
|
|
||||||
|
Moreover, your license from a particular copyright holder is
|
||||||
|
reinstated permanently if the copyright holder notifies you of the
|
||||||
|
violation by some reasonable means, this is the first time you have
|
||||||
|
received notice of violation of this License (for any work) from that
|
||||||
|
copyright holder, and you cure the violation prior to 30 days after
|
||||||
|
your receipt of the notice.
|
||||||
|
|
||||||
|
Termination of your rights under this section does not terminate the
|
||||||
|
licenses of parties who have received copies or rights from you under
|
||||||
|
this License. If your rights have been terminated and not permanently
|
||||||
|
reinstated, you do not qualify to receive new licenses for the same
|
||||||
|
material under section 10.
|
||||||
|
|
||||||
|
9. Acceptance Not Required for Having Copies.
|
||||||
|
|
||||||
|
You are not required to accept this License in order to receive or
|
||||||
|
run a copy of the Program. Ancillary propagation of a covered work
|
||||||
|
occurring solely as a consequence of using peer-to-peer transmission
|
||||||
|
to receive a copy likewise does not require acceptance. However,
|
||||||
|
nothing other than this License grants you permission to propagate or
|
||||||
|
modify any covered work. These actions infringe copyright if you do
|
||||||
|
not accept this License. Therefore, by modifying or propagating a
|
||||||
|
covered work, you indicate your acceptance of this License to do so.
|
||||||
|
|
||||||
|
10. Automatic Licensing of Downstream Recipients.
|
||||||
|
|
||||||
|
Each time you convey a covered work, the recipient automatically
|
||||||
|
receives a license from the original licensors, to run, modify and
|
||||||
|
propagate that work, subject to this License. You are not responsible
|
||||||
|
for enforcing compliance by third parties with this License.
|
||||||
|
|
||||||
|
An "entity transaction" is a transaction transferring control of an
|
||||||
|
organization, or substantially all assets of one, or subdividing an
|
||||||
|
organization, or merging organizations. If propagation of a covered
|
||||||
|
work results from an entity transaction, each party to that
|
||||||
|
transaction who receives a copy of the work also receives whatever
|
||||||
|
licenses to the work the party's predecessor in interest had or could
|
||||||
|
give under the previous paragraph, plus a right to possession of the
|
||||||
|
Corresponding Source of the work from the predecessor in interest, if
|
||||||
|
the predecessor has it or can get it with reasonable efforts.
|
||||||
|
|
||||||
|
You may not impose any further restrictions on the exercise of the
|
||||||
|
rights granted or affirmed under this License. For example, you may
|
||||||
|
not impose a license fee, royalty, or other charge for exercise of
|
||||||
|
rights granted under this License, and you may not initiate litigation
|
||||||
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||||
|
any patent claim is infringed by making, using, selling, offering for
|
||||||
|
sale, or importing the Program or any portion of it.
|
||||||
|
|
||||||
|
11. Patents.
|
||||||
|
|
||||||
|
A "contributor" is a copyright holder who authorizes use under this
|
||||||
|
License of the Program or a work on which the Program is based. The
|
||||||
|
work thus licensed is called the contributor's "contributor version".
|
||||||
|
|
||||||
|
A contributor's "essential patent claims" are all patent claims
|
||||||
|
owned or controlled by the contributor, whether already acquired or
|
||||||
|
hereafter acquired, that would be infringed by some manner, permitted
|
||||||
|
by this License, of making, using, or selling its contributor version,
|
||||||
|
but do not include claims that would be infringed only as a
|
||||||
|
consequence of further modification of the contributor version. For
|
||||||
|
purposes of this definition, "control" includes the right to grant
|
||||||
|
patent sublicenses in a manner consistent with the requirements of
|
||||||
|
this License.
|
||||||
|
|
||||||
|
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||||
|
patent license under the contributor's essential patent claims, to
|
||||||
|
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||||
|
propagate the contents of its contributor version.
|
||||||
|
|
||||||
|
In the following three paragraphs, a "patent license" is any express
|
||||||
|
agreement or commitment, however denominated, not to enforce a patent
|
||||||
|
(such as an express permission to practice a patent or covenant not to
|
||||||
|
sue for patent infringement). To "grant" such a patent license to a
|
||||||
|
party means to make such an agreement or commitment not to enforce a
|
||||||
|
patent against the party.
|
||||||
|
|
||||||
|
If you convey a covered work, knowingly relying on a patent license,
|
||||||
|
and the Corresponding Source of the work is not available for anyone
|
||||||
|
to copy, free of charge and under the terms of this License, through a
|
||||||
|
publicly available network server or other readily accessible means,
|
||||||
|
then you must either (1) cause the Corresponding Source to be so
|
||||||
|
available, or (2) arrange to deprive yourself of the benefit of the
|
||||||
|
patent license for this particular work, or (3) arrange, in a manner
|
||||||
|
consistent with the requirements of this License, to extend the patent
|
||||||
|
license to downstream recipients. "Knowingly relying" means you have
|
||||||
|
actual knowledge that, but for the patent license, your conveying the
|
||||||
|
covered work in a country, or your recipient's use of the covered work
|
||||||
|
in a country, would infringe one or more identifiable patents in that
|
||||||
|
country that you have reason to believe are valid.
|
||||||
|
|
||||||
|
If, pursuant to or in connection with a single transaction or
|
||||||
|
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||||
|
covered work, and grant a patent license to some of the parties
|
||||||
|
receiving the covered work authorizing them to use, propagate, modify
|
||||||
|
or convey a specific copy of the covered work, then the patent license
|
||||||
|
you grant is automatically extended to all recipients of the covered
|
||||||
|
work and works based on it.
|
||||||
|
|
||||||
|
A patent license is "discriminatory" if it does not include within
|
||||||
|
the scope of its coverage, prohibits the exercise of, or is
|
||||||
|
conditioned on the non-exercise of one or more of the rights that are
|
||||||
|
specifically granted under this License. You may not convey a covered
|
||||||
|
work if you are a party to an arrangement with a third party that is
|
||||||
|
in the business of distributing software, under which you make payment
|
||||||
|
to the third party based on the extent of your activity of conveying
|
||||||
|
the work, and under which the third party grants, to any of the
|
||||||
|
parties who would receive the covered work from you, a discriminatory
|
||||||
|
patent license (a) in connection with copies of the covered work
|
||||||
|
conveyed by you (or copies made from those copies), or (b) primarily
|
||||||
|
for and in connection with specific products or compilations that
|
||||||
|
contain the covered work, unless you entered into that arrangement,
|
||||||
|
or that patent license was granted, prior to 28 March 2007.
|
||||||
|
|
||||||
|
Nothing in this License shall be construed as excluding or limiting
|
||||||
|
any implied license or other defenses to infringement that may
|
||||||
|
otherwise be available to you under applicable patent law.
|
||||||
|
|
||||||
|
12. No Surrender of Others' Freedom.
|
||||||
|
|
||||||
|
If conditions are imposed on you (whether by court order, agreement or
|
||||||
|
otherwise) that contradict the conditions of this License, they do not
|
||||||
|
excuse you from the conditions of this License. If you cannot convey a
|
||||||
|
covered work so as to satisfy simultaneously your obligations under this
|
||||||
|
License and any other pertinent obligations, then as a consequence you may
|
||||||
|
not convey it at all. For example, if you agree to terms that obligate you
|
||||||
|
to collect a royalty for further conveying from those to whom you convey
|
||||||
|
the Program, the only way you could satisfy both those terms and this
|
||||||
|
License would be to refrain entirely from conveying the Program.
|
||||||
|
|
||||||
|
13. Use with the GNU Affero General Public License.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, you have
|
||||||
|
permission to link or combine any covered work with a work licensed
|
||||||
|
under version 3 of the GNU Affero General Public License into a single
|
||||||
|
combined work, and to convey the resulting work. The terms of this
|
||||||
|
License will continue to apply to the part which is the covered work,
|
||||||
|
but the special requirements of the GNU Affero General Public License,
|
||||||
|
section 13, concerning interaction through a network will apply to the
|
||||||
|
combination as such.
|
||||||
|
|
||||||
|
14. Revised Versions of this License.
|
||||||
|
|
||||||
|
The Free Software Foundation may publish revised and/or new versions of
|
||||||
|
the GNU General Public License from time to time. Such new versions will
|
||||||
|
be similar in spirit to the present version, but may differ in detail to
|
||||||
|
address new problems or concerns.
|
||||||
|
|
||||||
|
Each version is given a distinguishing version number. If the
|
||||||
|
Program specifies that a certain numbered version of the GNU General
|
||||||
|
Public License "or any later version" applies to it, you have the
|
||||||
|
option of following the terms and conditions either of that numbered
|
||||||
|
version or of any later version published by the Free Software
|
||||||
|
Foundation. If the Program does not specify a version number of the
|
||||||
|
GNU General Public License, you may choose any version ever published
|
||||||
|
by the Free Software Foundation.
|
||||||
|
|
||||||
|
If the Program specifies that a proxy can decide which future
|
||||||
|
versions of the GNU General Public License can be used, that proxy's
|
||||||
|
public statement of acceptance of a version permanently authorizes you
|
||||||
|
to choose that version for the Program.
|
||||||
|
|
||||||
|
Later license versions may give you additional or different
|
||||||
|
permissions. However, no additional obligations are imposed on any
|
||||||
|
author or copyright holder as a result of your choosing to follow a
|
||||||
|
later version.
|
||||||
|
|
||||||
|
15. Disclaimer of Warranty.
|
||||||
|
|
||||||
|
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||||
|
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||||
|
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||||
|
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||||
|
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||||
|
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||||
|
|
||||||
|
16. Limitation of Liability.
|
||||||
|
|
||||||
|
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||||
|
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||||
|
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||||
|
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||||
|
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||||
|
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||||
|
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||||
|
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||||
|
SUCH DAMAGES.
|
||||||
|
|
||||||
|
17. Interpretation of Sections 15 and 16.
|
||||||
|
|
||||||
|
If the disclaimer of warranty and limitation of liability provided
|
||||||
|
above cannot be given local legal effect according to their terms,
|
||||||
|
reviewing courts shall apply local law that most closely approximates
|
||||||
|
an absolute waiver of all civil liability in connection with the
|
||||||
|
Program, unless a warranty or assumption of liability accompanies a
|
||||||
|
copy of the Program in return for a fee.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
How to Apply These Terms to Your New Programs
|
||||||
|
|
||||||
|
If you develop a new program, and you want it to be of the greatest
|
||||||
|
possible use to the public, the best way to achieve this is to make it
|
||||||
|
free software which everyone can redistribute and change under these terms.
|
||||||
|
|
||||||
|
To do so, attach the following notices to the program. It is safest
|
||||||
|
to attach them to the start of each source file to most effectively
|
||||||
|
state the exclusion of warranty; and each file should have at least
|
||||||
|
the "copyright" line and a pointer to where the full notice is found.
|
||||||
|
|
||||||
|
<one line to give the program's name and a brief idea of what it does.>
|
||||||
|
Copyright (C) <year> <name of author>
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
Also add information on how to contact you by electronic and paper mail.
|
||||||
|
|
||||||
|
If the program does terminal interaction, make it output a short
|
||||||
|
notice like this when it starts in an interactive mode:
|
||||||
|
|
||||||
|
<program> Copyright (C) <year> <name of author>
|
||||||
|
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||||
|
This is free software, and you are welcome to redistribute it
|
||||||
|
under certain conditions; type `show c' for details.
|
||||||
|
|
||||||
|
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||||
|
parts of the General Public License. Of course, your program's commands
|
||||||
|
might be different; for a GUI interface, you would use an "about box".
|
||||||
|
|
||||||
|
You should also get your employer (if you work as a programmer) or school,
|
||||||
|
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||||
|
For more information on this, and how to apply and follow the GNU GPL, see
|
||||||
|
<https://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
The GNU General Public License does not permit incorporating your program
|
||||||
|
into proprietary programs. If your program is a subroutine library, you
|
||||||
|
may consider it more useful to permit linking proprietary applications with
|
||||||
|
the library. If this is what you want to do, use the GNU Lesser General
|
||||||
|
Public License instead of this License. But first, please read
|
||||||
|
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
@ -1,157 +1,89 @@
|
|||||||
# FreeGPT WebUI
|
# Cpp FreeGPT WebUI
|
||||||
|
|
||||||
## Build
|
|
||||||
```bash
|
|
||||||
docker build -t balsh_chat_gpt --network=host .
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
## GPT 3.5/4
|
## GPT 3.5/4
|
||||||
|
|
||||||
<strong>NOT REQUIRE ANY API KEY</strong> ❌🔑
|
<strong>NOT REQUIRE ANY API KEY</strong> ❌🔑
|
||||||
|
|
||||||
This project features a WebUI utilizing the [G4F API](https://github.com/xtekky/gpt4free). <br>
|
This project features a WebUI utilizing the [G4F API](https://github.com/xtekky/gpt4free). <br>
|
||||||
Experience the power of ChatGPT with a user-friendly interface, enhanced jailbreaks, and completely free.
|
Experience the power of ChatGPT with a user-friendly interface, enhanced jailbreaks, and completely free.
|
||||||
|
|
||||||
## Known bugs 🚧
|
|
||||||
- Stream mode not working properly.
|
|
||||||
|
|
||||||
## News 📢
|
|
||||||
I have created a new version of FreeGPT WebUI using the [ChimeraGPT API](https://chimeragpt.adventblocks.cc/).
|
|
||||||
<br>
|
|
||||||
<br>
|
|
||||||
This free API allows you to use various AI chat models, including <strong>GPT-4, GPT-4-32k, llama-2 and more.</strong> <br>
|
|
||||||
Check out the project here: [FreeGPT WebUI - Chimera Version](https://github.com/ramonvc/freegpt-webui/tree/chimeragpt-version).
|
|
||||||
|
|
||||||
## Project Hosting and Demonstration 🌐🚀
|
|
||||||
The project is hosted on multiple platforms to be tested and modified.
|
|
||||||
|Platform|Status|API Key|Free|Repo|Demo|
|
|
||||||
|--|--|--|--|--|--|
|
|
||||||
|[replit](https://replit.com/)||◼️|☑️|[FreeGPT WebUI](https://replit.com/@ramonvc/freegpt-webui)|[Chat](https://freegpt-webui.ramonvc.repl.co/chat/)
|
|
||||||
|[hugging face](https://huggingface.co)||◼️|☑️|[FreeGPT WebUI](https://huggingface.co/spaces/monra/freegpt-webui/tree/main)|[Chat](https://huggingface.co/spaces/monra/freegpt-webui)
|
|
||||||
|[replit](https://replit.com/)||☑️|☑️|[FreeGPT WebUI - Chimera Version](https://replit.com/@ramonvc/freegpt-webui-chimera)|[Chat](https://freegpt-webui-chimera.ramonvc.repl.co/chat/)
|
|
||||||
|[hugging face](https://huggingface.co)||☑️|☑️|[FreeGPT WebUI - Chimera Version](https://huggingface.co/spaces/monra/freegpt-webui-chimera/tree/main)|[Chat](https://huggingface.co/spaces/monra/freegpt-webui-chimera)
|
|
||||||
|
|
||||||
## Note ℹ️
|
|
||||||
<p>
|
|
||||||
FreeGPT is a project that utilizes various free AI conversation API Providers. Each Provider is an API that provides responses generated by different AI models. The source code related to these services is available in <a href="https://github.com/ramonvc/freegpt-webui/tree/main/g4f">G4F folder</a>.
|
|
||||||
|
|
||||||
It is important to note that, due to the extensive reach of this project, the free services registered here may receive a significant number of requests, which can result in temporary unavailability or access limitations. Therefore, it is common to encounter these services being offline or unstable.
|
|
||||||
|
|
||||||
We recommend that you search for your own Providers and add them to your personal projects to avoid service instability and unavailability. Within the project, in the <a href="https://github.com/ramonvc/freegpt-webui/tree/main/g4f/Provider/Providers">Providers folder</a>, you will find several examples of Providers that have worked in the past or are still functioning. It is easy to follow the logic of these examples to find free GPT services and incorporate the requests into your specific FreeGPT project.
|
|
||||||
|
|
||||||
Please note that the choice and integration of additional Providers are the user's responsibility and are not directly related to the FreeGPT project, as the project serves as an example of how to combine the <a href="https://github.com/xtekky/gpt4free">G4F API</a> with a web interface.
|
|
||||||
</p>
|
|
||||||
|
|
||||||
## Table of Contents
|
|
||||||
- [To-Do List](#to-do-list-%EF%B8%8F)
|
|
||||||
- [Getting Started](#getting-started-white_check_mark)
|
|
||||||
- [Cloning the Repository](#cloning-the-repository-inbox_tray)
|
|
||||||
- [Install Dependencies](#install-dependencies-wrench)
|
|
||||||
- [Running the Application](#running-the-application-rocket)
|
|
||||||
- [Docker](#docker-)
|
|
||||||
- [Prerequisites](#prerequisites)
|
|
||||||
- [Running the Docker](#running-the-docker)
|
|
||||||
- [Incorporated Projects](#incorporated-projects-busts_in_silhouette)
|
|
||||||
- [WebUI](#webui)
|
|
||||||
- [API FreeGPT](#api-g4f)
|
|
||||||
- [Star History](#star-history)
|
|
||||||
- [Legal Notice](#legal-notice)
|
|
||||||
|
|
||||||
##
|
|
||||||
|
|
||||||
## To-Do List ✔️
|
|
||||||
|
|
||||||
- [x] Integrate the free GPT API into the WebUI
|
|
||||||
- [x] Create Docker support
|
|
||||||
- [x] Improve the Jailbreak functionality
|
|
||||||
- [x] Add the GPT-4 model
|
|
||||||
- [x] Enhance the user interface
|
|
||||||
- [ ] Check status of API Providers (online/offline)
|
|
||||||
- [ ] Enable editing and creating Jailbreaks/Roles in the WebUI
|
|
||||||
- [ ] Refactor web client
|
|
||||||
|
|
||||||
## Getting Started :white_check_mark:
|
## Getting Started :white_check_mark:
|
||||||
To get started with this project, you'll need to clone the repository and have [Python](https://www.python.org/downloads/) installed on your system.
|
To get started with this project, you'll need to clone the repository and have g++ >= 13.1 installed on your system.
|
||||||
|
|
||||||
### Cloning the Repository :inbox_tray:
|
### Cloning the Repository :inbox_tray:
|
||||||
Run the following command to clone the repository:
|
Run the following command to clone the repository:
|
||||||
|
|
||||||
```
|
```
|
||||||
git clone https://github.com/ramonvc/freegpt-webui.git
|
git clone https://github.com/fantasy-peak/cpp-freegpt-webui.git
|
||||||
```
|
```
|
||||||
|
|
||||||
### Install Dependencies :wrench:
|
## Compile And Running the Application :rocket:
|
||||||
Navigate to the project directory:
|
|
||||||
```
|
|
||||||
cd freegpt-webui
|
|
||||||
```
|
|
||||||
|
|
||||||
Install the dependencies:
|
|
||||||
```
|
|
||||||
pip install -r requirements.txt
|
|
||||||
```
|
|
||||||
## Running the Application :rocket:
|
|
||||||
To run the application, run the following command:
|
To run the application, run the following command:
|
||||||
|
|
||||||
```
|
```
|
||||||
python run.py
|
1. Check local g++ version, need g++ version >= gcc version 13.1.0 (GCC)
|
||||||
|
|
||||||
|
2. install xmake
|
||||||
|
wget https://github.com/xmake-io/xmake/releases/download/v2.8.2/xmake-v2.8.2.xz.run
|
||||||
|
chmod 777 xmake-v2.8.2.xz.run
|
||||||
|
./xmake-v2.8.2.xz.run
|
||||||
|
source ~/.xmake/profile
|
||||||
|
|
||||||
|
3. install libcurl-impersonate, ubuntu (apt-get install libcurl4-openssl-dev) centos7 (yum install libcurl-devel.x86_64)
|
||||||
|
wget https://github.com/lwthiker/curl-impersonate/releases/download/v0.5.4/libcurl-impersonate-v0.5.4.x86_64-linux-gnu.tar.gz
|
||||||
|
sudo mv libcurl-impersonate-v0.5.4.x86_64-linux-gnu.tar.gz /usr/lib64
|
||||||
|
cd /usr/lib64
|
||||||
|
sudo tar -xvf libcurl-impersonate-v0.5.4.x86_64-linux-gnu.tar.gz
|
||||||
|
export LD_LIBRARY_PATH=/usr/lib64:$LD_LIBRARY_PATH
|
||||||
|
export LIBRARY_PATH=/usr/lib64:$LIBRARY_PATH
|
||||||
|
|
||||||
|
4. Compiling
|
||||||
|
git clone https://github.com/fantasy-peak/cpp-freegpt-webui.git
|
||||||
|
cd cpp-freegpt-webui
|
||||||
|
xmake build -v
|
||||||
|
xmake install -o .
|
||||||
|
cd bin
|
||||||
|
./cpp-freegpt-webui ../cfg/cpp-free-gpt.yml
|
||||||
```
|
```
|
||||||
|
|
||||||
Access the application in your browser using the URL:
|
Access the application in your browser using the URL:
|
||||||
```
|
```
|
||||||
http://127.0.0.1:1338
|
http://127.0.0.1:8858/chat
|
||||||
```
|
```
|
||||||
or
|
|
||||||
```
|
|
||||||
http://localhost:1338
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
## Docker 🐳
|
|
||||||
### Prerequisites
|
|
||||||
Before you start, make sure you have installed [Docker](https://www.docker.com/get-started) on your machine.
|
|
||||||
|
|
||||||
### Running the Docker
|
### Running the Docker
|
||||||
Pull the Docker image from Docker Hub:
|
Pull the Docker image from Docker Hub:
|
||||||
```
|
```
|
||||||
docker pull ramonvc/freegpt-webui
|
docker pull fantasypeak/freegpt:latest
|
||||||
```
|
```
|
||||||
|
|
||||||
Run the application using Docker:
|
Run the application using Docker:
|
||||||
```
|
```
|
||||||
docker run -p 1338:1338 ramonvc/freegpt-webui
|
docker run --net=host -it --name freegpt fantasypeak/freegpt:latest
|
||||||
|
// OR
|
||||||
|
docker run -p 8858:8858 -it --name freegpt fantasypeak/freegpt:latest
|
||||||
|
// use http_proxy
|
||||||
|
docker run -p 8858:8858 -it --name freegpt -e HTTP_PROXY=http://127.0.0.1:8080 -e CHAT_PATH=/chat fantasypeak/freegpt:latest
|
||||||
|
// set active providers
|
||||||
|
docker run -p 8858:8858 -it --name freegpt -e CHAT_PATH=/chat -e PROVIDERS="[\"gpt-4-ChatgptAi\",\"gpt-3.5-turbo-stream-DeepAi\"]" fantasypeak/freegpt:latest
|
||||||
|
// enable ip white list function
|
||||||
|
docker run -p 8858:8858 -it --name freegpt -e IP_WHITE_LIST="[\"127.0.0.1\",\"192.168.1.1\"]" fantasypeak/freegpt:latest
|
||||||
```
|
```
|
||||||
|
|
||||||
Access the application in your browser using the URL:
|
### Call OpenAi Api
|
||||||
```
|
```
|
||||||
http://127.0.0.1:1338
|
// It supports calling OpenAI's API, but need set API_KEY
|
||||||
|
docker run -p 8858:8858 -it --name freegpt -e CHAT_PATH=/chat -e API_KEY=a40f22f2-c1a2-4b1d-a47f-55ae1a7ddbed fantasypeak/freegpt:latest
|
||||||
```
|
```
|
||||||
or
|
|
||||||
```
|
|
||||||
http://localhost:1338
|
|
||||||
```
|
|
||||||
|
|
||||||
When you're done using the application, stop the Docker containers using the following command:
|
|
||||||
```
|
|
||||||
docker stop <container-id>
|
|
||||||
```
|
|
||||||
|
|
||||||
## Incorporated Projects :busts_in_silhouette:
|
|
||||||
I highly recommend visiting and supporting both projects.
|
|
||||||
|
|
||||||
### WebUI
|
### WebUI
|
||||||
The application interface was incorporated from the [chatgpt-clone](https://github.com/xtekky/chatgpt-clone) repository.
|
The application interface was incorporated from the [chatgpt-clone](https://github.com/xtekky/chatgpt-clone) repository.
|
||||||
|
|
||||||
|
<img src='chat.png'>
|
||||||
|
|
||||||
### API G4F
|
### API G4F
|
||||||
The free GPT-4 API was incorporated from the [GPT4Free](https://github.com/xtekky/gpt4free) repository.
|
The free GPT-4 API was incorporated from the [GPT4Free](https://github.com/xtekky/gpt4free) repository.
|
||||||
|
|
||||||
<br>
|
|
||||||
|
|
||||||
## Star History
|
|
||||||
[](https://star-history.com/#ramonvc/freegpt-webui&Timeline)
|
|
||||||
|
|
||||||
<br>
|
|
||||||
|
|
||||||
## Legal Notice
|
## Legal Notice
|
||||||
This repository is _not_ associated with or endorsed by providers of the APIs contained in this GitHub repository. This
|
This repository is _not_ associated with or endorsed by providers of the APIs contained in this GitHub repository. This
|
||||||
project is intended **for educational purposes only**. This is just a little personal project. Sites may contact me to
|
project is intended **for educational purposes only**. This is just a little personal project. Sites may contact me to
|
||||||
|
@ -1,2 +0,0 @@
|
|||||||
[python: **/server/.py]
|
|
||||||
[jinja2: **/client/html/**.html]
|
|
5
chat_gpt_microservice/cfg/cpp-free-gpt.yml
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
---
|
||||||
|
client_root_path: "../client"
|
||||||
|
enable_proxy: true
|
||||||
|
providers: []
|
||||||
|
ip_white_list: []
|
BIN
chat_gpt_microservice/chat.png
Normal file
After Width: | Height: | Size: 239 KiB |
@ -1,26 +0,0 @@
|
|||||||
.button {
|
|
||||||
display: flex;
|
|
||||||
padding: 8px 12px;
|
|
||||||
align-items: center;
|
|
||||||
justify-content: center;
|
|
||||||
border: 1px solid var(--conversations);
|
|
||||||
border-radius: var(--border-radius-1);
|
|
||||||
width: 100%;
|
|
||||||
background: transparent;
|
|
||||||
cursor: pointer;
|
|
||||||
}
|
|
||||||
|
|
||||||
.button span {
|
|
||||||
color: var(--colour-3);
|
|
||||||
font-size: 0.875rem;
|
|
||||||
}
|
|
||||||
|
|
||||||
.button i::before {
|
|
||||||
margin-right: 8px;
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-width: 990px) {
|
|
||||||
.button span {
|
|
||||||
font-size: 0.75rem;
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,4 +0,0 @@
|
|||||||
.buttons {
|
|
||||||
display: flex;
|
|
||||||
justify-content: left;
|
|
||||||
}
|
|
@ -1,55 +0,0 @@
|
|||||||
.checkbox input {
|
|
||||||
height: 0;
|
|
||||||
width: 0;
|
|
||||||
display: none;
|
|
||||||
}
|
|
||||||
|
|
||||||
.checkbox span {
|
|
||||||
font-size: 0.875rem;
|
|
||||||
color: var(--colour-2);
|
|
||||||
margin-left: 4px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.checkbox label:after {
|
|
||||||
content: "";
|
|
||||||
position: absolute;
|
|
||||||
top: 50%;
|
|
||||||
transform: translateY(-50%);
|
|
||||||
left: 5px;
|
|
||||||
width: 20px;
|
|
||||||
height: 20px;
|
|
||||||
background: var(--blur-border);
|
|
||||||
border-radius: 90px;
|
|
||||||
transition: 0.33s;
|
|
||||||
}
|
|
||||||
|
|
||||||
.checkbox input + label:after,
|
|
||||||
.checkbox input:checked + label {
|
|
||||||
background: var(--colour-3);
|
|
||||||
}
|
|
||||||
|
|
||||||
.checkbox input + label,
|
|
||||||
.checkbox input:checked + label:after {
|
|
||||||
background: var(--blur-border);
|
|
||||||
}
|
|
||||||
|
|
||||||
.checkbox input:checked + label:after {
|
|
||||||
left: calc(100% - 5px - 20px);
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-width: 990px) {
|
|
||||||
.checkbox label {
|
|
||||||
width: 25px;
|
|
||||||
height: 15px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.checkbox label:after {
|
|
||||||
left: 2px;
|
|
||||||
width: 10px;
|
|
||||||
height: 10px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.checkbox input:checked + label:after {
|
|
||||||
left: calc(100% - 2px - 10px);
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,158 +0,0 @@
|
|||||||
.conversation {
|
|
||||||
width: 60%;
|
|
||||||
margin: 0px 16px;
|
|
||||||
display: flex;
|
|
||||||
flex-direction: column;
|
|
||||||
}
|
|
||||||
|
|
||||||
.conversation #messages {
|
|
||||||
width: 100%;
|
|
||||||
display: flex;
|
|
||||||
flex-direction: column;
|
|
||||||
overflow: auto;
|
|
||||||
overflow-wrap: break-word;
|
|
||||||
padding-bottom: 8px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.conversation .user-input {
|
|
||||||
max-height: 180px;
|
|
||||||
margin: 16px 0px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.conversation .user-input input {
|
|
||||||
font-size: 1rem;
|
|
||||||
background: none;
|
|
||||||
border: none;
|
|
||||||
outline: none;
|
|
||||||
color: var(--colour-3);
|
|
||||||
}
|
|
||||||
|
|
||||||
.conversation .user-input input::placeholder {
|
|
||||||
color: var(--user-input);
|
|
||||||
}
|
|
||||||
|
|
||||||
.conversation-title {
|
|
||||||
color: var(--colour-3);
|
|
||||||
font-size: 14px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.conversation .user-input textarea {
|
|
||||||
font-size: 1rem;
|
|
||||||
width: 100%;
|
|
||||||
height: 100%;
|
|
||||||
padding: 12px;
|
|
||||||
background: none;
|
|
||||||
border: none;
|
|
||||||
outline: none;
|
|
||||||
color: var(--colour-3);
|
|
||||||
resize: vertical;
|
|
||||||
max-height: 150px;
|
|
||||||
min-height: 80px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.box {
|
|
||||||
backdrop-filter: blur(20px);
|
|
||||||
-webkit-backdrop-filter: blur(20px);
|
|
||||||
background-color: var(--blur-bg);
|
|
||||||
height: 100%;
|
|
||||||
width: 100%;
|
|
||||||
border-radius: var(--border-radius-1);
|
|
||||||
border: 1px solid var(--blur-border);
|
|
||||||
}
|
|
||||||
|
|
||||||
.box.input-box {
|
|
||||||
position: relative;
|
|
||||||
align-items: center;
|
|
||||||
padding: 8px;
|
|
||||||
cursor: pointer;
|
|
||||||
}
|
|
||||||
|
|
||||||
#send-button {
|
|
||||||
position: absolute;
|
|
||||||
bottom: 25%;
|
|
||||||
right: 10px;
|
|
||||||
z-index: 1;
|
|
||||||
padding: 16px;
|
|
||||||
}
|
|
||||||
|
|
||||||
#cursor {
|
|
||||||
line-height: 17px;
|
|
||||||
margin-left: 3px;
|
|
||||||
-webkit-animation: blink 0.8s infinite;
|
|
||||||
animation: blink 0.8s infinite;
|
|
||||||
width: 7px;
|
|
||||||
height: 15px;
|
|
||||||
}
|
|
||||||
|
|
||||||
@keyframes blink {
|
|
||||||
0% {
|
|
||||||
background: #ffffff00;
|
|
||||||
}
|
|
||||||
|
|
||||||
50% {
|
|
||||||
background: white;
|
|
||||||
}
|
|
||||||
|
|
||||||
100% {
|
|
||||||
background: #ffffff00;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@-webkit-keyframes blink {
|
|
||||||
0% {
|
|
||||||
background: #ffffff00;
|
|
||||||
}
|
|
||||||
|
|
||||||
50% {
|
|
||||||
background: white;
|
|
||||||
}
|
|
||||||
|
|
||||||
100% {
|
|
||||||
background: #ffffff00;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* scrollbar */
|
|
||||||
.conversation #messages::-webkit-scrollbar {
|
|
||||||
width: 4px;
|
|
||||||
padding: 8px 0px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.conversation #messages::-webkit-scrollbar-track {
|
|
||||||
background-color: #ffffff00;
|
|
||||||
}
|
|
||||||
|
|
||||||
.conversation #messages::-webkit-scrollbar-thumb {
|
|
||||||
background-color: #555555;
|
|
||||||
border-radius: 10px;
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-width: 990px) {
|
|
||||||
.conversation {
|
|
||||||
width: 100%;
|
|
||||||
height: 90%;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-height: 720px) {
|
|
||||||
.conversation.box {
|
|
||||||
height: 70%;
|
|
||||||
}
|
|
||||||
|
|
||||||
.conversation .user-input textarea {
|
|
||||||
font-size: 0.875rem;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-width: 360px) {
|
|
||||||
.box {
|
|
||||||
border-radius: 0;
|
|
||||||
}
|
|
||||||
.conversation {
|
|
||||||
margin: 0;
|
|
||||||
margin-top: 48px;
|
|
||||||
}
|
|
||||||
.conversation .user-input {
|
|
||||||
margin: 2px 0 8px 0;
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,10 +0,0 @@
|
|||||||
.dropdown {
|
|
||||||
border: 1px solid var(--conversations);
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-width: 990px) {
|
|
||||||
.dropdown {
|
|
||||||
padding: 4px 8px;
|
|
||||||
font-size: 0.75rem;
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,11 +0,0 @@
|
|||||||
.field {
|
|
||||||
display: flex;
|
|
||||||
align-items: center;
|
|
||||||
padding: 4px;
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-width: 990px) {
|
|
||||||
.field {
|
|
||||||
flex-wrap: nowrap;
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,70 +0,0 @@
|
|||||||
@import url("https://fonts.googleapis.com/css2?family=Inter:wght@100;200;300;400;500;600;700;800;900&display=swap");
|
|
||||||
* {
|
|
||||||
--font-1: "Inter", sans-serif;
|
|
||||||
--section-gap: 24px;
|
|
||||||
--border-radius-1: 8px;
|
|
||||||
margin: 0;
|
|
||||||
padding: 0;
|
|
||||||
box-sizing: border-box;
|
|
||||||
position: relative;
|
|
||||||
font-family: var(--font-1);
|
|
||||||
}
|
|
||||||
|
|
||||||
.theme-light {
|
|
||||||
--colour-1: #f5f5f5;
|
|
||||||
--colour-2: #000000;
|
|
||||||
--colour-3: #474747;
|
|
||||||
--colour-4: #949494;
|
|
||||||
--colour-5: #ebebeb;
|
|
||||||
--colour-6: #dadada;
|
|
||||||
|
|
||||||
--accent: #3a3a3a;
|
|
||||||
--blur-bg: #ffffff;
|
|
||||||
--blur-border: #dbdbdb;
|
|
||||||
--user-input: #282828;
|
|
||||||
--conversations: #666666;
|
|
||||||
}
|
|
||||||
|
|
||||||
.theme-dark {
|
|
||||||
--colour-1: #181818;
|
|
||||||
--colour-2: #ccc;
|
|
||||||
--colour-3: #dadada;
|
|
||||||
--colour-4: #f0f0f0;
|
|
||||||
--colour-5: #181818;
|
|
||||||
--colour-6: #242424;
|
|
||||||
|
|
||||||
--accent: #151718;
|
|
||||||
--blur-bg: #242627;
|
|
||||||
--blur-border: #242627;
|
|
||||||
--user-input: #f5f5f5;
|
|
||||||
--conversations: #555555;
|
|
||||||
}
|
|
||||||
|
|
||||||
html,
|
|
||||||
body {
|
|
||||||
background: var(--colour-1);
|
|
||||||
color: var(--colour-3);
|
|
||||||
}
|
|
||||||
|
|
||||||
ol,
|
|
||||||
ul {
|
|
||||||
padding-left: 20px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.shown {
|
|
||||||
display: flex !important;
|
|
||||||
}
|
|
||||||
|
|
||||||
a:-webkit-any-link {
|
|
||||||
color: var(--accent);
|
|
||||||
}
|
|
||||||
|
|
||||||
pre {
|
|
||||||
white-space: pre-wrap;
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-height: 720px) {
|
|
||||||
:root {
|
|
||||||
--section-gap: 16px;
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,68 +0,0 @@
|
|||||||
.hljs {
|
|
||||||
color: #e9e9f4;
|
|
||||||
background: #28293629;
|
|
||||||
border-radius: var(--border-radius-1);
|
|
||||||
border: 1px solid var(--blur-border);
|
|
||||||
font-size: 15px;
|
|
||||||
word-wrap: break-word;
|
|
||||||
white-space: pre-wrap;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* style for hljs copy */
|
|
||||||
.hljs-copy-wrapper {
|
|
||||||
position: relative;
|
|
||||||
overflow: hidden;
|
|
||||||
}
|
|
||||||
|
|
||||||
.hljs-copy-wrapper:hover .hljs-copy-button,
|
|
||||||
.hljs-copy-button:focus {
|
|
||||||
transform: translateX(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
.hljs-copy-button {
|
|
||||||
position: absolute;
|
|
||||||
transform: translateX(calc(100% + 1.125em));
|
|
||||||
top: 1em;
|
|
||||||
right: 1em;
|
|
||||||
width: 2rem;
|
|
||||||
height: 2rem;
|
|
||||||
text-indent: -9999px;
|
|
||||||
color: #fff;
|
|
||||||
border-radius: 0.25rem;
|
|
||||||
border: 1px solid #ffffff22;
|
|
||||||
background-color: #2d2b57;
|
|
||||||
background-image: url('data:image/svg+xml;utf-8,<svg width="16" height="16" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M6 5C5.73478 5 5.48043 5.10536 5.29289 5.29289C5.10536 5.48043 5 5.73478 5 6V20C5 20.2652 5.10536 20.5196 5.29289 20.7071C5.48043 20.8946 5.73478 21 6 21H18C18.2652 21 18.5196 20.8946 18.7071 20.7071C18.8946 20.5196 19 20.2652 19 20V6C19 5.73478 18.8946 5.48043 18.7071 5.29289C18.5196 5.10536 18.2652 5 18 5H16C15.4477 5 15 4.55228 15 4C15 3.44772 15.4477 3 16 3H18C18.7956 3 19.5587 3.31607 20.1213 3.87868C20.6839 4.44129 21 5.20435 21 6V20C21 20.7957 20.6839 21.5587 20.1213 22.1213C19.5587 22.6839 18.7957 23 18 23H6C5.20435 23 4.44129 22.6839 3.87868 22.1213C3.31607 21.5587 3 20.7957 3 20V6C3 5.20435 3.31607 4.44129 3.87868 3.87868C4.44129 3.31607 5.20435 3 6 3H8C8.55228 3 9 3.44772 9 4C9 4.55228 8.55228 5 8 5H6Z" fill="white"/><path fill-rule="evenodd" clip-rule="evenodd" d="M7 3C7 1.89543 7.89543 1 9 1H15C16.1046 1 17 1.89543 17 3V5C17 6.10457 16.1046 7 15 7H9C7.89543 7 7 6.10457 7 5V3ZM15 3H9V5H15V3Z" fill="white"/></svg>');
|
|
||||||
background-repeat: no-repeat;
|
|
||||||
background-position: center;
|
|
||||||
transition: background-color 200ms ease, transform 200ms ease-out;
|
|
||||||
}
|
|
||||||
|
|
||||||
.hljs-copy-button:hover {
|
|
||||||
border-color: #ffffff44;
|
|
||||||
}
|
|
||||||
|
|
||||||
.hljs-copy-button:active {
|
|
||||||
border-color: #ffffff66;
|
|
||||||
}
|
|
||||||
|
|
||||||
.hljs-copy-button[data-copied="true"] {
|
|
||||||
text-indent: 0;
|
|
||||||
width: auto;
|
|
||||||
background-image: none;
|
|
||||||
}
|
|
||||||
|
|
||||||
.hljs-copy-alert {
|
|
||||||
clip: rect(0 0 0 0);
|
|
||||||
clip-path: inset(50%);
|
|
||||||
height: 1px;
|
|
||||||
overflow: hidden;
|
|
||||||
position: absolute;
|
|
||||||
white-space: nowrap;
|
|
||||||
width: 1px;
|
|
||||||
}
|
|
||||||
|
|
||||||
@media (prefers-reduced-motion) {
|
|
||||||
.hljs-copy-button {
|
|
||||||
transition: none;
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,16 +0,0 @@
|
|||||||
label {
|
|
||||||
cursor: pointer;
|
|
||||||
text-indent: -9999px;
|
|
||||||
width: 50px;
|
|
||||||
height: 30px;
|
|
||||||
backdrop-filter: blur(20px);
|
|
||||||
-webkit-backdrop-filter: blur(20px);
|
|
||||||
background-color: var(--blur-bg);
|
|
||||||
border-radius: var(--border-radius-1);
|
|
||||||
border: 1px solid var(--blur-border);
|
|
||||||
display: block;
|
|
||||||
border-radius: 100px;
|
|
||||||
position: relative;
|
|
||||||
overflow: hidden;
|
|
||||||
transition: 0.33s;
|
|
||||||
}
|
|
@ -1,14 +0,0 @@
|
|||||||
.main-container {
|
|
||||||
display: flex;
|
|
||||||
padding: var(--section-gap);
|
|
||||||
height: 100vh;
|
|
||||||
justify-content: center;
|
|
||||||
box-sizing: border-box;
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-width: 360px) {
|
|
||||||
.main-container {
|
|
||||||
padding: 0px;
|
|
||||||
height: 90vh;
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,27 +0,0 @@
|
|||||||
#message-input {
|
|
||||||
margin-right: 30px;
|
|
||||||
height: 64px;
|
|
||||||
}
|
|
||||||
|
|
||||||
#message-input::-webkit-scrollbar {
|
|
||||||
width: 5px;
|
|
||||||
}
|
|
||||||
|
|
||||||
#message-input::-webkit-scrollbar-track {
|
|
||||||
background: #f1f1f1;
|
|
||||||
}
|
|
||||||
|
|
||||||
#message-input::-webkit-scrollbar-thumb {
|
|
||||||
background: #c7a2ff;
|
|
||||||
}
|
|
||||||
|
|
||||||
#message-input::-webkit-scrollbar-thumb:hover {
|
|
||||||
background: #8b3dff;
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-width: 360px) {
|
|
||||||
#message-input {
|
|
||||||
margin: 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
@ -1,65 +0,0 @@
|
|||||||
.message {
|
|
||||||
width: 100%;
|
|
||||||
overflow-wrap: break-word;
|
|
||||||
display: flex;
|
|
||||||
gap: var(--section-gap);
|
|
||||||
padding: var(--section-gap);
|
|
||||||
padding-bottom: 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
.message:last-child {
|
|
||||||
animation: 0.6s show_message;
|
|
||||||
}
|
|
||||||
|
|
||||||
@keyframes show_message {
|
|
||||||
from {
|
|
||||||
transform: translateY(10px);
|
|
||||||
opacity: 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
.message .avatar-container img {
|
|
||||||
max-width: 48px;
|
|
||||||
max-height: 48px;
|
|
||||||
box-shadow: 0.4px 0.5px 0.7px -2px rgba(0, 0, 0, 0.08), 1.1px 1.3px 2px -2px rgba(0, 0, 0, 0.041),
|
|
||||||
2.7px 3px 4.8px -2px rgba(0, 0, 0, 0.029), 9px 10px 16px -2px rgba(0, 0, 0, 0.022);
|
|
||||||
}
|
|
||||||
|
|
||||||
.message .content {
|
|
||||||
display: flex;
|
|
||||||
flex-direction: column;
|
|
||||||
width: 90%;
|
|
||||||
gap: 18px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.message .content p,
|
|
||||||
.message .content li,
|
|
||||||
.message .content code {
|
|
||||||
font-size: 1rem;
|
|
||||||
line-height: 1.3;
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-height: 720px) {
|
|
||||||
.message {
|
|
||||||
padding: 12px;
|
|
||||||
gap: 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
.message .content {
|
|
||||||
margin-left: 8px;
|
|
||||||
width: 80%;
|
|
||||||
}
|
|
||||||
|
|
||||||
.message .avatar-container img {
|
|
||||||
max-width: 32px;
|
|
||||||
max-height: 32px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.message .content,
|
|
||||||
.message .content p,
|
|
||||||
.message .content li,
|
|
||||||
.message .content code {
|
|
||||||
font-size: 0.875rem;
|
|
||||||
line-height: 1.3;
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,10 +0,0 @@
|
|||||||
.options-container {
|
|
||||||
display: flex;
|
|
||||||
flex-wrap: wrap;
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-width: 990px) {
|
|
||||||
.options-container {
|
|
||||||
justify-content: space-between;
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,35 +0,0 @@
|
|||||||
select {
|
|
||||||
-webkit-border-radius: 8px;
|
|
||||||
-moz-border-radius: 8px;
|
|
||||||
border-radius: 8px;
|
|
||||||
|
|
||||||
-webkit-backdrop-filter: blur(20px);
|
|
||||||
backdrop-filter: blur(20px);
|
|
||||||
|
|
||||||
cursor: pointer;
|
|
||||||
background-color: var(--blur-bg);
|
|
||||||
border: 1px solid var(--blur-border);
|
|
||||||
color: var(--colour-3);
|
|
||||||
display: block;
|
|
||||||
position: relative;
|
|
||||||
overflow: hidden;
|
|
||||||
outline: none;
|
|
||||||
padding: 8px 16px;
|
|
||||||
|
|
||||||
appearance: none;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* scrollbar */
|
|
||||||
select.dropdown::-webkit-scrollbar {
|
|
||||||
width: 4px;
|
|
||||||
padding: 8px 0px;
|
|
||||||
}
|
|
||||||
|
|
||||||
select.dropdown::-webkit-scrollbar-track {
|
|
||||||
background-color: #ffffff00;
|
|
||||||
}
|
|
||||||
|
|
||||||
select.dropdown::-webkit-scrollbar-thumb {
|
|
||||||
background-color: #555555;
|
|
||||||
border-radius: 10px;
|
|
||||||
}
|
|
@ -1,44 +0,0 @@
|
|||||||
.settings-container {
|
|
||||||
color: var(--colour-2);
|
|
||||||
margin: 24px 0px 8px 0px;
|
|
||||||
justify-content: center;
|
|
||||||
}
|
|
||||||
|
|
||||||
.settings-container span {
|
|
||||||
font-size: 0.875rem;
|
|
||||||
margin: 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
.settings-container label {
|
|
||||||
width: 24px;
|
|
||||||
height: 16px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.settings-container .field {
|
|
||||||
justify-content: space-between;
|
|
||||||
}
|
|
||||||
|
|
||||||
.settings-container .checkbox input + label,
|
|
||||||
.settings-container .checkbox input:checked + label:after {
|
|
||||||
background: var(--colour-1);
|
|
||||||
}
|
|
||||||
|
|
||||||
.settings-container .checkbox input + label:after,
|
|
||||||
.settings-container .checkbox input:checked + label {
|
|
||||||
background: var(--colour-3);
|
|
||||||
}
|
|
||||||
|
|
||||||
.settings-container .checkbox label:after {
|
|
||||||
left: 2px;
|
|
||||||
width: 10px;
|
|
||||||
height: 10px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.settings-container .checkbox input:checked + label:after {
|
|
||||||
left: calc(100% - 2px - 10px);
|
|
||||||
}
|
|
||||||
|
|
||||||
.settings-container .dropdown {
|
|
||||||
padding: 4px 8px;
|
|
||||||
font-size: 0.75rem;
|
|
||||||
}
|
|
@ -1,197 +0,0 @@
|
|||||||
.sidebar {
|
|
||||||
max-width: 260px;
|
|
||||||
padding: var(--section-gap);
|
|
||||||
flex-shrink: 0;
|
|
||||||
display: flex;
|
|
||||||
flex-direction: column;
|
|
||||||
justify-content: space-between;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar .title {
|
|
||||||
font-size: 14px;
|
|
||||||
font-weight: 500;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar .conversation-sidebar {
|
|
||||||
padding: 8px 12px;
|
|
||||||
display: flex;
|
|
||||||
gap: 18px;
|
|
||||||
align-items: center;
|
|
||||||
user-select: none;
|
|
||||||
justify-content: space-between;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar .conversation-sidebar .left {
|
|
||||||
cursor: pointer;
|
|
||||||
display: flex;
|
|
||||||
align-items: center;
|
|
||||||
gap: 10px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar i {
|
|
||||||
color: var(--conversations);
|
|
||||||
cursor: pointer;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar .top {
|
|
||||||
display: flex;
|
|
||||||
flex-direction: column;
|
|
||||||
overflow: hidden;
|
|
||||||
gap: 16px;
|
|
||||||
padding-right: 8px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar .top:hover {
|
|
||||||
overflow: auto;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar .info {
|
|
||||||
padding: 8px 12px 0px 12px;
|
|
||||||
display: flex;
|
|
||||||
align-items: center;
|
|
||||||
justify-content: center;
|
|
||||||
user-select: none;
|
|
||||||
background: transparent;
|
|
||||||
width: 100%;
|
|
||||||
border: none;
|
|
||||||
text-decoration: none;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar .info span {
|
|
||||||
color: var(--conversations);
|
|
||||||
line-height: 1.5;
|
|
||||||
font-size: 0.75rem;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar .info i::before {
|
|
||||||
margin-right: 8px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar-footer {
|
|
||||||
width: 100%;
|
|
||||||
margin-top: 16px;
|
|
||||||
display: flex;
|
|
||||||
flex-direction: column;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar-footer button {
|
|
||||||
cursor: pointer;
|
|
||||||
user-select: none;
|
|
||||||
background: transparent;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar.shown {
|
|
||||||
position: fixed;
|
|
||||||
top: 0;
|
|
||||||
left: 0;
|
|
||||||
width: 100%;
|
|
||||||
height: 100%;
|
|
||||||
z-index: 1000;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar.shown .box {
|
|
||||||
background-color: #16171a;
|
|
||||||
width: 80%;
|
|
||||||
height: 100%;
|
|
||||||
overflow-y: auto;
|
|
||||||
}
|
|
||||||
|
|
||||||
@keyframes spinner {
|
|
||||||
to {
|
|
||||||
transform: rotate(360deg);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* scrollbar */
|
|
||||||
.sidebar .top::-webkit-scrollbar {
|
|
||||||
width: 4px;
|
|
||||||
padding: 8px 0px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar .top::-webkit-scrollbar-track {
|
|
||||||
background-color: #ffffff00;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar .top::-webkit-scrollbar-thumb {
|
|
||||||
background-color: #555555;
|
|
||||||
border-radius: 10px;
|
|
||||||
}
|
|
||||||
|
|
||||||
.spinner:before {
|
|
||||||
content: "";
|
|
||||||
box-sizing: border-box;
|
|
||||||
position: absolute;
|
|
||||||
top: 50%;
|
|
||||||
left: 45%;
|
|
||||||
width: 20px;
|
|
||||||
height: 20px;
|
|
||||||
border-radius: 50%;
|
|
||||||
border: 1px solid var(--conversations);
|
|
||||||
border-top-color: white;
|
|
||||||
animation: spinner 0.6s linear infinite;
|
|
||||||
}
|
|
||||||
|
|
||||||
.menu-button {
|
|
||||||
display: none !important;
|
|
||||||
position: absolute;
|
|
||||||
z-index: 100000;
|
|
||||||
top: 0;
|
|
||||||
left: 0;
|
|
||||||
margin: 10px;
|
|
||||||
font-size: 1rem;
|
|
||||||
cursor: pointer;
|
|
||||||
width: 30px;
|
|
||||||
height: 30px;
|
|
||||||
justify-content: center;
|
|
||||||
align-items: center;
|
|
||||||
transition: 0.33s;
|
|
||||||
}
|
|
||||||
|
|
||||||
.menu-button i {
|
|
||||||
transition: 0.33s;
|
|
||||||
}
|
|
||||||
|
|
||||||
.rotated {
|
|
||||||
transform: rotate(360deg);
|
|
||||||
}
|
|
||||||
|
|
||||||
.menu-button.rotated {
|
|
||||||
position: fixed;
|
|
||||||
top: 10px;
|
|
||||||
left: 10px;
|
|
||||||
z-index: 1001;
|
|
||||||
}
|
|
||||||
|
|
||||||
@media screen and (max-width: 990px) {
|
|
||||||
.sidebar {
|
|
||||||
display: none;
|
|
||||||
width: 100%;
|
|
||||||
max-width: none;
|
|
||||||
}
|
|
||||||
|
|
||||||
.menu-button {
|
|
||||||
display: flex !important;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@media (max-width: 990px) {
|
|
||||||
.sidebar .top {
|
|
||||||
padding-top: 48px;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@media (min-width: 768px) {
|
|
||||||
.sidebar.shown {
|
|
||||||
position: static;
|
|
||||||
width: auto;
|
|
||||||
height: auto;
|
|
||||||
background-color: transparent;
|
|
||||||
}
|
|
||||||
|
|
||||||
.sidebar.shown .box {
|
|
||||||
background-color: #16171a;
|
|
||||||
width: auto;
|
|
||||||
height: auto;
|
|
||||||
overflow-y: auto;
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,38 +0,0 @@
|
|||||||
.stop-generating {
|
|
||||||
position: absolute;
|
|
||||||
bottom: 128px;
|
|
||||||
left: 50%;
|
|
||||||
transform: translateX(-50%);
|
|
||||||
z-index: 1000000;
|
|
||||||
}
|
|
||||||
|
|
||||||
.stop-generating button {
|
|
||||||
backdrop-filter: blur(20px);
|
|
||||||
-webkit-backdrop-filter: blur(20px);
|
|
||||||
background-color: var(--blur-bg);
|
|
||||||
color: var(--colour-3);
|
|
||||||
cursor: pointer;
|
|
||||||
animation: show_popup 0.4s;
|
|
||||||
}
|
|
||||||
|
|
||||||
@keyframes show_popup {
|
|
||||||
from {
|
|
||||||
opacity: 0;
|
|
||||||
transform: translateY(10px);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@keyframes hide_popup {
|
|
||||||
to {
|
|
||||||
opacity: 0;
|
|
||||||
transform: translateY(10px);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
.stop-generating-hiding button {
|
|
||||||
animation: hide_popup 0.4s;
|
|
||||||
}
|
|
||||||
|
|
||||||
.stop-generating-hidden button {
|
|
||||||
display: none;
|
|
||||||
}
|
|
@ -1,18 +1,821 @@
|
|||||||
@import "global.css";
|
@import url("https://fonts.googleapis.com/css2?family=Inter:wght@100;200;300;400;500;600;700;800;900&display=swap");
|
||||||
@import "hljs.css";
|
|
||||||
@import "main.css";
|
/* :root {
|
||||||
@import "sidebar.css";
|
--colour-1: #ffffff;
|
||||||
@import "conversation.css";
|
--colour-2: #000000;
|
||||||
@import "message.css";
|
--colour-3: #000000;
|
||||||
@import "stop-generating.css";
|
--colour-4: #000000;
|
||||||
@import "typing.css";
|
--colour-5: #000000;
|
||||||
@import "checkbox.css";
|
--colour-6: #000000;
|
||||||
@import "label.css";
|
|
||||||
@import "button.css";
|
--accent: #ffffff;
|
||||||
@import "buttons.css";
|
--blur-bg: #98989866;
|
||||||
@import "dropdown.css";
|
--blur-border: #00000040;
|
||||||
@import "field.css";
|
--user-input: #000000;
|
||||||
@import "select.css";
|
--conversations: #000000;
|
||||||
@import "options.css";
|
} */
|
||||||
@import "settings.css";
|
|
||||||
@import "message-input.css";
|
:root {
|
||||||
|
--colour-1: #000000;
|
||||||
|
--colour-2: #ccc;
|
||||||
|
--colour-3: #e4d4ff;
|
||||||
|
--colour-4: #f0f0f0;
|
||||||
|
--colour-5: #181818;
|
||||||
|
--colour-6: #242424;
|
||||||
|
|
||||||
|
--accent: #8b3dff;
|
||||||
|
--blur-bg: #16101b66;
|
||||||
|
--blur-border: #84719040;
|
||||||
|
--user-input: #ac87bb;
|
||||||
|
--conversations: #c7a2ff;
|
||||||
|
}
|
||||||
|
|
||||||
|
:root {
|
||||||
|
--font-1: "Inter", sans-serif;
|
||||||
|
--section-gap: 25px;
|
||||||
|
--border-radius-1: 8px;
|
||||||
|
}
|
||||||
|
|
||||||
|
* {
|
||||||
|
margin: 0;
|
||||||
|
padding: 0;
|
||||||
|
box-sizing: border-box;
|
||||||
|
position: relative;
|
||||||
|
font-family: var(--font-1);
|
||||||
|
}
|
||||||
|
|
||||||
|
html,
|
||||||
|
body {
|
||||||
|
scroll-behavior: smooth;
|
||||||
|
overflow: hidden;
|
||||||
|
}
|
||||||
|
|
||||||
|
body {
|
||||||
|
padding: var(--section-gap);
|
||||||
|
background: var(--colour-1);
|
||||||
|
color: var(--colour-3);
|
||||||
|
min-height: 100vh;
|
||||||
|
}
|
||||||
|
|
||||||
|
.row {
|
||||||
|
display: flex;
|
||||||
|
gap: var(--section-gap);
|
||||||
|
height: 100%;
|
||||||
|
}
|
||||||
|
|
||||||
|
.box {
|
||||||
|
backdrop-filter: blur(20px);
|
||||||
|
-webkit-backdrop-filter: blur(20px);
|
||||||
|
background-color: var(--blur-bg);
|
||||||
|
height: 100%;
|
||||||
|
width: 100%;
|
||||||
|
border-radius: var(--border-radius-1);
|
||||||
|
border: 1px solid var(--blur-border);
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversations {
|
||||||
|
max-width: 260px;
|
||||||
|
padding: var(--section-gap);
|
||||||
|
overflow: auto;
|
||||||
|
flex-shrink: 0;
|
||||||
|
display: flex;
|
||||||
|
flex-direction: column;
|
||||||
|
justify-content: space-between;
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversation {
|
||||||
|
width: 100%;
|
||||||
|
min-height: 50%;
|
||||||
|
height: 100vh;
|
||||||
|
overflow-y: scroll;
|
||||||
|
overflow-x: hidden;
|
||||||
|
display: flex;
|
||||||
|
flex-direction: column;
|
||||||
|
gap: 15px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversation #messages {
|
||||||
|
width: 100%;
|
||||||
|
display: flex;
|
||||||
|
flex-direction: column;
|
||||||
|
overflow-wrap: break-word;
|
||||||
|
overflow-y: inherit;
|
||||||
|
overflow-x: hidden;
|
||||||
|
padding-bottom: 50px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversation .user-input {
|
||||||
|
max-height: 10vh;
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversation .user-input input {
|
||||||
|
font-size: 15px;
|
||||||
|
width: 100%;
|
||||||
|
height: 100%;
|
||||||
|
padding: 12px 15px;
|
||||||
|
background: none;
|
||||||
|
border: none;
|
||||||
|
outline: none;
|
||||||
|
color: var(--colour-3);
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversation .user-input input::placeholder {
|
||||||
|
color: var(--user-input)
|
||||||
|
}
|
||||||
|
|
||||||
|
.gradient:nth-child(1) {
|
||||||
|
--top: 0;
|
||||||
|
--right: 0;
|
||||||
|
--size: 70vw;
|
||||||
|
--blur: calc(0.5 * var(--size));
|
||||||
|
--opacity: 0.3;
|
||||||
|
animation: zoom_gradient 6s infinite;
|
||||||
|
}
|
||||||
|
|
||||||
|
.gradient {
|
||||||
|
position: absolute;
|
||||||
|
z-index: -1;
|
||||||
|
border-radius: calc(0.5 * var(--size));
|
||||||
|
background-color: var(--accent);
|
||||||
|
background: radial-gradient(circle at center, var(--accent), var(--accent));
|
||||||
|
width: 70vw;
|
||||||
|
height: 70vw;
|
||||||
|
top: 50%;
|
||||||
|
right: 0;
|
||||||
|
transform: translateY(-50%);
|
||||||
|
filter: blur(calc(0.5 * 70vw)) opacity(var(--opacity));
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversations {
|
||||||
|
display: flex;
|
||||||
|
flex-direction: column;
|
||||||
|
gap: 16px;
|
||||||
|
flex: auto;
|
||||||
|
min-width: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversations .title {
|
||||||
|
font-size: 14px;
|
||||||
|
font-weight: 500;
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversations .convo {
|
||||||
|
padding: 8px 12px;
|
||||||
|
display: flex;
|
||||||
|
gap: 18px;
|
||||||
|
align-items: center;
|
||||||
|
user-select: none;
|
||||||
|
justify-content: space-between;
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversations .convo .left {
|
||||||
|
cursor: pointer;
|
||||||
|
display: flex;
|
||||||
|
align-items: center;
|
||||||
|
gap: 10px;
|
||||||
|
flex: auto;
|
||||||
|
min-width: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversations i {
|
||||||
|
color: var(--conversations);
|
||||||
|
cursor: pointer;
|
||||||
|
}
|
||||||
|
|
||||||
|
.convo-title {
|
||||||
|
color: var(--colour-3);
|
||||||
|
font-size: 14px;
|
||||||
|
overflow: hidden;
|
||||||
|
text-overflow: ellipsis;
|
||||||
|
}
|
||||||
|
|
||||||
|
.message {
|
||||||
|
|
||||||
|
width: 100%;
|
||||||
|
overflow-wrap: break-word;
|
||||||
|
display: flex;
|
||||||
|
gap: var(--section-gap);
|
||||||
|
padding: var(--section-gap);
|
||||||
|
padding-bottom: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.message:last-child {
|
||||||
|
animation: 0.6s show_message;
|
||||||
|
}
|
||||||
|
|
||||||
|
@keyframes show_message {
|
||||||
|
from {
|
||||||
|
transform: translateY(10px);
|
||||||
|
opacity: 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
.message .user {
|
||||||
|
max-width: 48px;
|
||||||
|
max-height: 48px;
|
||||||
|
flex-shrink: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.message .user img {
|
||||||
|
width: 100%;
|
||||||
|
height: 100%;
|
||||||
|
object-fit: cover;
|
||||||
|
border-radius: 8px;
|
||||||
|
outline: 1px solid var(--blur-border);
|
||||||
|
}
|
||||||
|
|
||||||
|
.message .user:after {
|
||||||
|
content: "63";
|
||||||
|
position: absolute;
|
||||||
|
bottom: 0;
|
||||||
|
right: 0;
|
||||||
|
height: 60%;
|
||||||
|
width: 60%;
|
||||||
|
background: var(--colour-3);
|
||||||
|
filter: blur(10px) opacity(0.5);
|
||||||
|
z-index: 10000;
|
||||||
|
}
|
||||||
|
|
||||||
|
.message .content {
|
||||||
|
display: flex;
|
||||||
|
flex-direction: column;
|
||||||
|
gap: 18px;
|
||||||
|
min-width: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.message .content p,
|
||||||
|
.message .content li,
|
||||||
|
.message .content code {
|
||||||
|
font-size: 15px;
|
||||||
|
line-height: 1.3;
|
||||||
|
}
|
||||||
|
|
||||||
|
.message .user i {
|
||||||
|
position: absolute;
|
||||||
|
bottom: -6px;
|
||||||
|
right: -6px;
|
||||||
|
z-index: 1000;
|
||||||
|
}
|
||||||
|
|
||||||
|
.new_convo {
|
||||||
|
padding: 8px 12px;
|
||||||
|
display: flex;
|
||||||
|
gap: 18px;
|
||||||
|
align-items: center;
|
||||||
|
cursor: pointer;
|
||||||
|
user-select: none;
|
||||||
|
background: transparent;
|
||||||
|
border: 1px dashed var(--conversations);
|
||||||
|
border-radius: var(--border-radius-1);
|
||||||
|
}
|
||||||
|
|
||||||
|
.new_convo span {
|
||||||
|
color: var(--colour-3);
|
||||||
|
font-size: 14px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.new_convo:hover {
|
||||||
|
border-style: solid;
|
||||||
|
}
|
||||||
|
|
||||||
|
.stop_generating {
|
||||||
|
position: absolute;
|
||||||
|
bottom: 118px;
|
||||||
|
/* left: 10px;
|
||||||
|
bottom: 125px;
|
||||||
|
right: 8px; */
|
||||||
|
left: 50%;
|
||||||
|
transform: translateX(-50%);
|
||||||
|
z-index: 1000000;
|
||||||
|
}
|
||||||
|
|
||||||
|
.stop_generating button {
|
||||||
|
backdrop-filter: blur(20px);
|
||||||
|
-webkit-backdrop-filter: blur(20px);
|
||||||
|
background-color: var(--blur-bg);
|
||||||
|
border-radius: var(--border-radius-1);
|
||||||
|
border: 1px solid var(--blur-border);
|
||||||
|
padding: 10px 15px;
|
||||||
|
color: var(--colour-3);
|
||||||
|
display: flex;
|
||||||
|
justify-content: center;
|
||||||
|
align-items: center;
|
||||||
|
gap: 12px;
|
||||||
|
cursor: pointer;
|
||||||
|
animation: show_popup 0.4s;
|
||||||
|
}
|
||||||
|
|
||||||
|
@keyframes show_popup {
|
||||||
|
from {
|
||||||
|
opacity: 0;
|
||||||
|
transform: translateY(10px);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@keyframes hide_popup {
|
||||||
|
to {
|
||||||
|
opacity: 0;
|
||||||
|
transform: translateY(10px);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
.stop_generating-hiding button {
|
||||||
|
animation: hide_popup 0.4s;
|
||||||
|
}
|
||||||
|
|
||||||
|
.stop_generating-hidden button {
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
.typing {
|
||||||
|
position: absolute;
|
||||||
|
top: -25px;
|
||||||
|
left: 0;
|
||||||
|
font-size: 14px;
|
||||||
|
animation: show_popup 0.4s;
|
||||||
|
}
|
||||||
|
|
||||||
|
.typing-hiding {
|
||||||
|
animation: hide_popup 0.4s;
|
||||||
|
}
|
||||||
|
|
||||||
|
.typing-hidden {
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
input[type="checkbox"] {
|
||||||
|
height: 0;
|
||||||
|
width: 0;
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
label {
|
||||||
|
cursor: pointer;
|
||||||
|
text-indent: -9999px;
|
||||||
|
width: 50px;
|
||||||
|
height: 30px;
|
||||||
|
backdrop-filter: blur(20px);
|
||||||
|
-webkit-backdrop-filter: blur(20px);
|
||||||
|
background-color: var(--blur-bg);
|
||||||
|
border-radius: var(--border-radius-1);
|
||||||
|
border: 1px solid var(--blur-border);
|
||||||
|
display: block;
|
||||||
|
border-radius: 100px;
|
||||||
|
position: relative;
|
||||||
|
overflow: hidden;
|
||||||
|
transition: 0.33s;
|
||||||
|
}
|
||||||
|
|
||||||
|
label:after {
|
||||||
|
content: "";
|
||||||
|
position: absolute;
|
||||||
|
top: 50%;
|
||||||
|
transform: translateY(-50%);
|
||||||
|
left: 5px;
|
||||||
|
width: 20px;
|
||||||
|
height: 20px;
|
||||||
|
background: var(--colour-3);
|
||||||
|
border-radius: 90px;
|
||||||
|
transition: 0.33s;
|
||||||
|
}
|
||||||
|
|
||||||
|
input:checked+label {
|
||||||
|
background: var(--blur-border);
|
||||||
|
}
|
||||||
|
|
||||||
|
input:checked+label:after {
|
||||||
|
left: calc(100% - 5px - 20px);
|
||||||
|
}
|
||||||
|
|
||||||
|
.buttons {
|
||||||
|
min-height: 10vh;
|
||||||
|
display: flex;
|
||||||
|
align-items: start;
|
||||||
|
justify-content: left;
|
||||||
|
width: 100%;
|
||||||
|
}
|
||||||
|
|
||||||
|
.field {
|
||||||
|
height: fit-content;
|
||||||
|
display: flex;
|
||||||
|
align-items: center;
|
||||||
|
gap: 16px;
|
||||||
|
padding-right: 15px
|
||||||
|
}
|
||||||
|
|
||||||
|
.field .about {
|
||||||
|
font-size: 14px;
|
||||||
|
color: var(--colour-3);
|
||||||
|
}
|
||||||
|
|
||||||
|
.disable-scrollbars::-webkit-scrollbar {
|
||||||
|
background: transparent; /* Chrome/Safari/Webkit */
|
||||||
|
width: 0px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.disable-scrollbars {
|
||||||
|
scrollbar-width: none; /* Firefox */
|
||||||
|
-ms-overflow-style: none; /* IE 10+ */
|
||||||
|
}
|
||||||
|
|
||||||
|
select {
|
||||||
|
-webkit-border-radius: 8px;
|
||||||
|
-moz-border-radius: 8px;
|
||||||
|
border-radius: 8px;
|
||||||
|
|
||||||
|
-webkit-backdrop-filter: blur(20px);
|
||||||
|
backdrop-filter: blur(20px);
|
||||||
|
|
||||||
|
cursor: pointer;
|
||||||
|
background-color: var(--blur-bg);
|
||||||
|
border: 1px solid var(--blur-border);
|
||||||
|
color: var(--colour-3);
|
||||||
|
display: block;
|
||||||
|
position: relative;
|
||||||
|
overflow: hidden;
|
||||||
|
outline: none;
|
||||||
|
padding: 8px 16px;
|
||||||
|
|
||||||
|
appearance: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
.input-box {
|
||||||
|
display: flex;
|
||||||
|
align-items: center;
|
||||||
|
padding-right: 15px;
|
||||||
|
cursor: pointer;
|
||||||
|
}
|
||||||
|
|
||||||
|
.info {
|
||||||
|
padding: 8px 12px;
|
||||||
|
display: flex;
|
||||||
|
gap: 18px;
|
||||||
|
align-items: center;
|
||||||
|
user-select: none;
|
||||||
|
background: transparent;
|
||||||
|
border-radius: var(--border-radius-1);
|
||||||
|
width: 100%;
|
||||||
|
cursor: default;
|
||||||
|
border: 1px dashed var(--conversations)
|
||||||
|
}
|
||||||
|
|
||||||
|
.bottom_buttons {
|
||||||
|
width: 100%;
|
||||||
|
display: flex;
|
||||||
|
flex-direction: column;
|
||||||
|
gap: 10px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.bottom_buttons button {
|
||||||
|
padding: 8px 12px;
|
||||||
|
display: flex;
|
||||||
|
gap: 18px;
|
||||||
|
align-items: center;
|
||||||
|
cursor: pointer;
|
||||||
|
user-select: none;
|
||||||
|
background: transparent;
|
||||||
|
border: 1px solid #c7a2ff;
|
||||||
|
border-radius: var(--border-radius-1);
|
||||||
|
width: 100%;
|
||||||
|
}
|
||||||
|
|
||||||
|
.bottom_buttons button span {
|
||||||
|
color: var(--colour-3);
|
||||||
|
font-size: 14px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversations .top {
|
||||||
|
display: flex;
|
||||||
|
flex-direction: column;
|
||||||
|
gap: 16px;
|
||||||
|
overflow: auto;
|
||||||
|
}
|
||||||
|
|
||||||
|
#cursor {
|
||||||
|
line-height: 17px;
|
||||||
|
margin-left: 3px;
|
||||||
|
-webkit-animation: blink 0.8s infinite;
|
||||||
|
animation: blink 0.8s infinite;
|
||||||
|
width: 7px;
|
||||||
|
height: 15px;
|
||||||
|
}
|
||||||
|
|
||||||
|
@keyframes blink {
|
||||||
|
0% {
|
||||||
|
background: #ffffff00;
|
||||||
|
}
|
||||||
|
|
||||||
|
50% {
|
||||||
|
background: white;
|
||||||
|
}
|
||||||
|
|
||||||
|
100% {
|
||||||
|
background: #ffffff00;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@-webkit-keyframes blink {
|
||||||
|
0% {
|
||||||
|
background: #ffffff00;
|
||||||
|
}
|
||||||
|
|
||||||
|
50% {
|
||||||
|
background: white;
|
||||||
|
}
|
||||||
|
|
||||||
|
100% {
|
||||||
|
background: #ffffff00;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
ol,
|
||||||
|
ul {
|
||||||
|
padding-left: 20px;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@keyframes spinner {
|
||||||
|
to {
|
||||||
|
transform: rotate(360deg);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
.spinner:before {
|
||||||
|
content: '';
|
||||||
|
box-sizing: border-box;
|
||||||
|
position: absolute;
|
||||||
|
top: 50%;
|
||||||
|
left: 45%;
|
||||||
|
width: 20px;
|
||||||
|
height: 20px;
|
||||||
|
|
||||||
|
border-radius: 50%;
|
||||||
|
border: 1px solid var(--conversations);
|
||||||
|
border-top-color: white;
|
||||||
|
animation: spinner .6s linear infinite;
|
||||||
|
}
|
||||||
|
|
||||||
|
.grecaptcha-badge {
|
||||||
|
visibility: hidden;
|
||||||
|
}
|
||||||
|
|
||||||
|
.mobile-sidebar {
|
||||||
|
display: none !important;
|
||||||
|
position: absolute;
|
||||||
|
z-index: 100000;
|
||||||
|
top: 0;
|
||||||
|
left: 0;
|
||||||
|
margin: 10px;
|
||||||
|
font-size: 20px;
|
||||||
|
cursor: pointer;
|
||||||
|
backdrop-filter: blur(20px);
|
||||||
|
-webkit-backdrop-filter: blur(20px);
|
||||||
|
background-color: var(--blur-bg);
|
||||||
|
border-radius: 10px;
|
||||||
|
border: 1px solid var(--blur-border);
|
||||||
|
width: 40px;
|
||||||
|
height: 40px;
|
||||||
|
justify-content: center;
|
||||||
|
align-items: center;
|
||||||
|
transition: 0.33s;
|
||||||
|
}
|
||||||
|
|
||||||
|
.mobile-sidebar i {
|
||||||
|
transition: 0.33s;
|
||||||
|
}
|
||||||
|
|
||||||
|
.rotated {
|
||||||
|
transform: rotate(360deg);
|
||||||
|
}
|
||||||
|
|
||||||
|
@media screen and (max-width: 990px) {
|
||||||
|
.conversations {
|
||||||
|
display: none;
|
||||||
|
width: 100%;
|
||||||
|
max-width: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
.buttons {
|
||||||
|
flex-wrap: wrap;
|
||||||
|
gap: 5px;
|
||||||
|
padding-bottom: 10vh;
|
||||||
|
margin-bottom: 10vh;
|
||||||
|
}
|
||||||
|
|
||||||
|
.field {
|
||||||
|
min-height: 5%;
|
||||||
|
width: fit-content;
|
||||||
|
}
|
||||||
|
|
||||||
|
.mobile-sidebar {
|
||||||
|
display: flex !important;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@media screen and (max-height: 640px) {
|
||||||
|
body {
|
||||||
|
height: 87vh
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
.shown {
|
||||||
|
display: flex;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
a:-webkit-any-link {
|
||||||
|
color: var(--accent);
|
||||||
|
}
|
||||||
|
|
||||||
|
.conversation .user-input textarea {
|
||||||
|
font-size: 15px;
|
||||||
|
width: 100%;
|
||||||
|
height: 100%;
|
||||||
|
padding: 12px 15px;
|
||||||
|
background: none;
|
||||||
|
border: none;
|
||||||
|
outline: none;
|
||||||
|
color: var(--colour-3);
|
||||||
|
|
||||||
|
resize: vertical;
|
||||||
|
max-height: 150px;
|
||||||
|
min-height: 80px;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* style for hljs copy */
|
||||||
|
.hljs-copy-wrapper {
|
||||||
|
position: relative;
|
||||||
|
overflow: hidden
|
||||||
|
}
|
||||||
|
|
||||||
|
.hljs-copy-wrapper:hover .hljs-copy-button,
|
||||||
|
.hljs-copy-button:focus {
|
||||||
|
transform: translateX(0)
|
||||||
|
}
|
||||||
|
|
||||||
|
.hljs-copy-button {
|
||||||
|
position: absolute;
|
||||||
|
transform: translateX(calc(100% + 1.125em));
|
||||||
|
top: 1em;
|
||||||
|
right: 1em;
|
||||||
|
width: 2rem;
|
||||||
|
height: 2rem;
|
||||||
|
text-indent: -9999px;
|
||||||
|
color: #fff;
|
||||||
|
border-radius: .25rem;
|
||||||
|
border: 1px solid #ffffff22;
|
||||||
|
background-color: #2d2b57;
|
||||||
|
background-image: url('data:image/svg+xml;utf-8,<svg width="16" height="16" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M6 5C5.73478 5 5.48043 5.10536 5.29289 5.29289C5.10536 5.48043 5 5.73478 5 6V20C5 20.2652 5.10536 20.5196 5.29289 20.7071C5.48043 20.8946 5.73478 21 6 21H18C18.2652 21 18.5196 20.8946 18.7071 20.7071C18.8946 20.5196 19 20.2652 19 20V6C19 5.73478 18.8946 5.48043 18.7071 5.29289C18.5196 5.10536 18.2652 5 18 5H16C15.4477 5 15 4.55228 15 4C15 3.44772 15.4477 3 16 3H18C18.7956 3 19.5587 3.31607 20.1213 3.87868C20.6839 4.44129 21 5.20435 21 6V20C21 20.7957 20.6839 21.5587 20.1213 22.1213C19.5587 22.6839 18.7957 23 18 23H6C5.20435 23 4.44129 22.6839 3.87868 22.1213C3.31607 21.5587 3 20.7957 3 20V6C3 5.20435 3.31607 4.44129 3.87868 3.87868C4.44129 3.31607 5.20435 3 6 3H8C8.55228 3 9 3.44772 9 4C9 4.55228 8.55228 5 8 5H6Z" fill="white"/><path fill-rule="evenodd" clip-rule="evenodd" d="M7 3C7 1.89543 7.89543 1 9 1H15C16.1046 1 17 1.89543 17 3V5C17 6.10457 16.1046 7 15 7H9C7.89543 7 7 6.10457 7 5V3ZM15 3H9V5H15V3Z" fill="white"/></svg>');
|
||||||
|
background-repeat: no-repeat;
|
||||||
|
background-position: center;
|
||||||
|
transition: background-color 200ms ease, transform 200ms ease-out
|
||||||
|
}
|
||||||
|
|
||||||
|
.hljs-copy-button:hover {
|
||||||
|
border-color: #ffffff44
|
||||||
|
}
|
||||||
|
|
||||||
|
.hljs-copy-button:active {
|
||||||
|
border-color: #ffffff66
|
||||||
|
}
|
||||||
|
|
||||||
|
.hljs-copy-button[data-copied="true"] {
|
||||||
|
text-indent: 0;
|
||||||
|
width: auto;
|
||||||
|
background-image: none
|
||||||
|
}
|
||||||
|
|
||||||
|
@media(prefers-reduced-motion) {
|
||||||
|
.hljs-copy-button {
|
||||||
|
transition: none
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
.hljs-copy-alert {
|
||||||
|
clip: rect(0 0 0 0);
|
||||||
|
clip-path: inset(50%);
|
||||||
|
height: 1px;
|
||||||
|
overflow: hidden;
|
||||||
|
position: absolute;
|
||||||
|
white-space: nowrap;
|
||||||
|
width: 1px
|
||||||
|
}
|
||||||
|
|
||||||
|
.visually-hidden {
|
||||||
|
clip: rect(0 0 0 0);
|
||||||
|
clip-path: inset(50%);
|
||||||
|
height: 1px;
|
||||||
|
overflow: hidden;
|
||||||
|
position: absolute;
|
||||||
|
white-space: nowrap;
|
||||||
|
width: 1px;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
.color-picker>fieldset {
|
||||||
|
border: 0;
|
||||||
|
display: flex;
|
||||||
|
width: fit-content;
|
||||||
|
background: var(--colour-1);
|
||||||
|
margin-inline: auto;
|
||||||
|
border-radius: 8px;
|
||||||
|
-webkit-backdrop-filter: blur(20px);
|
||||||
|
backdrop-filter: blur(20px);
|
||||||
|
cursor: pointer;
|
||||||
|
background-color: var(--blur-bg);
|
||||||
|
border: 1px solid var(--blur-border);
|
||||||
|
color: var(--colour-3);
|
||||||
|
display: block;
|
||||||
|
position: relative;
|
||||||
|
overflow: hidden;
|
||||||
|
outline: none;
|
||||||
|
padding: 6px 16px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.color-picker input[type="radio"]:checked {
|
||||||
|
background-color: var(--radio-color);
|
||||||
|
}
|
||||||
|
|
||||||
|
.color-picker input[type="radio"]#light {
|
||||||
|
--radio-color: gray;
|
||||||
|
}
|
||||||
|
|
||||||
|
.color-picker input[type="radio"]#pink {
|
||||||
|
--radio-color: pink;
|
||||||
|
}
|
||||||
|
|
||||||
|
.color-picker input[type="radio"]#blue {
|
||||||
|
--radio-color: blue;
|
||||||
|
}
|
||||||
|
|
||||||
|
.color-picker input[type="radio"]#green {
|
||||||
|
--radio-color: green;
|
||||||
|
}
|
||||||
|
|
||||||
|
.color-picker input[type="radio"]#dark {
|
||||||
|
--radio-color: #232323;
|
||||||
|
}
|
||||||
|
|
||||||
|
.pink {
|
||||||
|
--colour-1: hsl(310 50% 90%);
|
||||||
|
--clr-card-bg: hsl(310 50% 100%);
|
||||||
|
--colour-3: hsl(310 50% 15%);
|
||||||
|
--conversations: hsl(310 50% 25%);
|
||||||
|
}
|
||||||
|
|
||||||
|
.blue {
|
||||||
|
--colour-1: hsl(209 50% 90%);
|
||||||
|
--clr-card-bg: hsl(209 50% 100%);
|
||||||
|
--colour-3: hsl(209 50% 15%);
|
||||||
|
--conversations: hsl(209 50% 25%);
|
||||||
|
}
|
||||||
|
|
||||||
|
.green {
|
||||||
|
--colour-1: hsl(109 50% 90%);
|
||||||
|
--clr-card-bg: hsl(109 50% 100%);
|
||||||
|
--colour-3: hsl(109 50% 15%);
|
||||||
|
--conversations: hsl(109 50% 25%);
|
||||||
|
}
|
||||||
|
|
||||||
|
.dark {
|
||||||
|
--colour-1: hsl(209 50% 10%);
|
||||||
|
--clr-card-bg: hsl(209 50% 5%);
|
||||||
|
--colour-3: hsl(209 50% 90%);
|
||||||
|
--conversations: hsl(209 50% 80%);
|
||||||
|
}
|
||||||
|
|
||||||
|
:root:has(#pink:checked) {
|
||||||
|
--colour-1: hsl(310 50% 90%);
|
||||||
|
--clr-card-bg: hsl(310 50% 100%);
|
||||||
|
--colour-3: hsl(310 50% 15%);
|
||||||
|
--conversations: hsl(310 50% 25%);
|
||||||
|
}
|
||||||
|
|
||||||
|
:root:has(#blue:checked) {
|
||||||
|
--colour-1: hsl(209 50% 90%);
|
||||||
|
--clr-card-bg: hsl(209 50% 100%);
|
||||||
|
--colour-3: hsl(209 50% 15%);
|
||||||
|
--conversations: hsl(209 50% 25%);
|
||||||
|
}
|
||||||
|
|
||||||
|
:root:has(#green:checked) {
|
||||||
|
--colour-1: hsl(109 50% 90%);
|
||||||
|
--clr-card-bg: hsl(109 50% 100%);
|
||||||
|
--colour-3: hsl(109 50% 15%);
|
||||||
|
--conversations: hsl(109 50% 25%);
|
||||||
|
}
|
||||||
|
|
||||||
|
:root:has(#dark:checked) {
|
||||||
|
--colour-1: hsl(209 50% 10%);
|
||||||
|
--clr-card-bg: hsl(209 50% 5%);
|
||||||
|
--colour-3: hsl(209 50% 90%);
|
||||||
|
--conversations: hsl(209 50% 80%);
|
||||||
|
}
|
||||||
|
|
||||||
|
.trash-icon {
|
||||||
|
position: absolute;
|
||||||
|
top: 20px;
|
||||||
|
right: 20px;
|
||||||
|
}
|
||||||
|
@ -1,15 +0,0 @@
|
|||||||
.typing {
|
|
||||||
position: absolute;
|
|
||||||
top: -25px;
|
|
||||||
left: 0;
|
|
||||||
font-size: 14px;
|
|
||||||
animation: show_popup 0.4s;
|
|
||||||
}
|
|
||||||
|
|
||||||
.typing-hiding {
|
|
||||||
animation: hide_popup 0.4s;
|
|
||||||
}
|
|
||||||
|
|
||||||
.typing-hidden {
|
|
||||||
display: none;
|
|
||||||
}
|
|
@ -1,135 +1,155 @@
|
|||||||
<!DOCTYPE html>
|
<!DOCTYPE html>
|
||||||
<html lang="en">
|
<html lang="en">
|
||||||
<head>
|
<head>
|
||||||
<meta charset="UTF-8" />
|
<meta charset="UTF-8">
|
||||||
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
|
<meta http-equiv="X-UA-Compatible" content="IE=edge">
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1.0 maximum-scale=1.0" />
|
<meta name="viewport" content="width=device-width, initial-scale=1.0 maximum-scale=1.0">
|
||||||
<meta name="description" content="A conversational AI system that listens, learns, and challenges" />
|
<meta name="description" content="A conversational AI system that listens, learns, and challenges">
|
||||||
<meta property="og:title" content="ChatGPT" />
|
<meta property="og:title" content="ChatGPT">
|
||||||
<meta property="og:image" content="https://openai.com/content/images/2022/11/ChatGPT.jpg" />
|
<meta property="og:image" content="https://openai.com/content/images/2022/11/ChatGPT.jpg">
|
||||||
<meta
|
<meta property="og:description" content="A conversational AI system that listens, learns, and challenges">
|
||||||
property="og:description"
|
<meta property="og:url" content="https://chat.acy.dev">
|
||||||
content="A conversational AI system that listens, learns, and challenges" />
|
<link rel="stylesheet" href="/assets/css/style.css">
|
||||||
<meta property="og:url" content="https://chat.acy.dev" />
|
<link rel="apple-touch-icon" sizes="180x180" href="/assets/img/apple-touch-icon.png">
|
||||||
<link rel="stylesheet" href="{{ url_for('bp.static', filename='css/style.css') }}" />
|
<link rel="icon" type="image/png" sizes="32x32" href="/assets/img/favicon-32x32.png">
|
||||||
<link
|
<link rel="icon" type="image/png" sizes="16x16" href="/assets/img/favicon-16x16.png">
|
||||||
rel="apple-touch-icon"
|
<link rel="manifest" href="/assets/img/site.webmanifest">
|
||||||
sizes="180x180"
|
<script src="/assets/js/icons.js"></script>
|
||||||
href="{{ url_for('bp.static', filename='img/apple-touch-icon.png') }}" />
|
<script src="/assets/js/chat.js" defer></script>
|
||||||
<link
|
<script src="https://cdn.jsdelivr.net/npm/markdown-it@latest/dist/markdown-it.min.js"></script>
|
||||||
rel="icon"
|
<link rel="stylesheet" href="//cdn.jsdelivr.net/gh/highlightjs/cdn-release@latest/build/styles/base16/dracula.min.css">
|
||||||
type="image/png"
|
<script>
|
||||||
sizes="32x32"
|
const user_image = `<img src="/assets/img/user.png" alt="User Avatar">`;
|
||||||
href="{{ url_for('bp.static', filename='img/favicon-32x32.png') }}" />
|
const gpt_image = `<img src="/assets/img/gpt.png" alt="GPT Avatar">`;
|
||||||
<link
|
</script>
|
||||||
rel="icon"
|
<style>
|
||||||
type="image/png"
|
.hljs {
|
||||||
sizes="16x16"
|
color: #e9e9f4;
|
||||||
href="{{ url_for('bp.static', filename='img/favicon-16x16.png') }}" />
|
background: #28293629;
|
||||||
<link rel="manifest" href="{{ url_for('bp.static', filename='img/site.webmanifest') }}" />
|
border-radius: var(--border-radius-1);
|
||||||
<link
|
border: 1px solid var(--blur-border);
|
||||||
rel="stylesheet"
|
font-size: 15px;
|
||||||
href="//cdn.jsdelivr.net/gh/highlightjs/cdn-release@latest/build/styles/base16/dracula.min.css" />
|
}
|
||||||
<title>FreeGPT</title>
|
|
||||||
</head>
|
|
||||||
|
|
||||||
<body data-urlprefix="{{ url_prefix}}">
|
#message-input {
|
||||||
<div class="main-container">
|
margin-right: 30px;
|
||||||
<div class="box sidebar">
|
height: 80px;
|
||||||
<div class="top">
|
}
|
||||||
<button class="button" onclick="new_conversation()">
|
|
||||||
<i class="fa-regular fa-plus"></i>
|
|
||||||
<span>{{_('New Conversation')}}</span>
|
|
||||||
</button>
|
|
||||||
<div class="spinner"></div>
|
|
||||||
</div>
|
|
||||||
<div class="sidebar-footer">
|
|
||||||
<button class="button" onclick="delete_conversations()">
|
|
||||||
<i class="fa-regular fa-trash"></i>
|
|
||||||
<span>{{_('Clear Conversations')}}</span>
|
|
||||||
</button>
|
|
||||||
<div class="settings-container">
|
|
||||||
<div class="checkbox field">
|
|
||||||
<span>{{_('Dark Mode')}}</span>
|
|
||||||
<input type="checkbox" id="theme-toggler" />
|
|
||||||
<label for="theme-toggler"></label>
|
|
||||||
</div>
|
|
||||||
<div class="field">
|
|
||||||
<span>{{_('Language')}}</span>
|
|
||||||
<select
|
|
||||||
class="dropdown"
|
|
||||||
id="language"
|
|
||||||
onchange="changeLanguage(this.value)"></select>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
<a class="info" href="https://github.com/ramonvc/gptfree-jailbreak-webui" target="_blank">
|
|
||||||
<i class="fa-brands fa-github"></i>
|
|
||||||
<span class="conversation-title"> {{_('Version')}}: 0.1.0 </span>
|
|
||||||
</a>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
<div class="conversation">
|
|
||||||
<div class="stop-generating stop-generating-hidden">
|
|
||||||
<button class="button" id="cancelButton">
|
|
||||||
<span>{{_('Stop Generating')}}</span>
|
|
||||||
</button>
|
|
||||||
</div>
|
|
||||||
<div class="box" id="messages"></div>
|
|
||||||
<div class="user-input">
|
|
||||||
<div class="box input-box">
|
|
||||||
<textarea
|
|
||||||
id="message-input"
|
|
||||||
placeholder="{{_('Ask a question')}}"
|
|
||||||
cols="30"
|
|
||||||
rows="10"
|
|
||||||
style="white-space: pre-wrap"></textarea>
|
|
||||||
<div id="send-button">
|
|
||||||
<i class="fa-regular fa-paper-plane-top"></i>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
<div>
|
|
||||||
<div class="options-container">
|
|
||||||
<div class="buttons">
|
|
||||||
<div class="field">
|
|
||||||
<select class="dropdown" name="model" id="model">
|
|
||||||
<option value="gpt-3.5-turbo" selected>GPT-3.5</option>
|
|
||||||
<option value="gpt-3.5-turbo-16k">GPT-3.5-turbo-16k</option>
|
|
||||||
<option value="gpt-4">GPT-4</option>
|
|
||||||
</select>
|
|
||||||
</div>
|
|
||||||
<div class="field">
|
|
||||||
<select class="dropdown" name="jailbreak" id="jailbreak">
|
|
||||||
<option value="default" selected>{{_('Default')}}</option>
|
|
||||||
<option value="gpt-dan-11.0">{{_('DAN')}}</option>
|
|
||||||
<option value="gpt-evil">{{_('Evil')}}</option>
|
|
||||||
</select>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
<div class="field checkbox">
|
|
||||||
<input type="checkbox" id="switch" />
|
|
||||||
<label for="switch"></label>
|
|
||||||
<span>{{_('Web Access')}}</span>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
</div>
|
|
||||||
<div class="menu-button">
|
|
||||||
<i class="fa-solid fa-bars"></i>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<!-- scripts -->
|
#message-input::-webkit-scrollbar {
|
||||||
<script>
|
width: 5px;
|
||||||
window.conversation_id = "{{ chat_id }}";
|
}
|
||||||
</script>
|
|
||||||
<script src="{{ url_for('bp.static', filename='js/icons.js') }}"></script>
|
/* Track */
|
||||||
<script src="{{ url_for('bp.static', filename='js/chat.js') }}" defer></script>
|
#message-input::-webkit-scrollbar-track {
|
||||||
<script src="https://cdn.jsdelivr.net/npm/markdown-it@latest/dist/markdown-it.min.js"></script>
|
background: #f1f1f1;
|
||||||
<script src="{{ url_for('bp.static', filename='js/highlight.min.js') }}"></script>
|
}
|
||||||
<script src="{{ url_for('bp.static', filename='js/highlightjs-copy.min.js') }}"></script>
|
|
||||||
<script src="{{ url_for('bp.static', filename='js/theme-toggler.js') }}"></script>
|
/* Handle */
|
||||||
<script src="{{ url_for('bp.static', filename='js/sidebar-toggler.js') }}"></script>
|
#message-input::-webkit-scrollbar-thumb {
|
||||||
<script src="{{ url_for('bp.static', filename='js/change-language.js') }}"></script>
|
background: #c7a2ff;
|
||||||
</body>
|
}
|
||||||
|
|
||||||
|
/* Handle on hover */
|
||||||
|
#message-input::-webkit-scrollbar-thumb:hover {
|
||||||
|
background: #8b3dff;
|
||||||
|
}
|
||||||
|
</style>
|
||||||
|
<script src="/assets/js/highlight.min.js"></script>
|
||||||
|
<script src="/assets/js/highlightjs-copy.min.js"></script>
|
||||||
|
<script>window.conversation_id = {{chat_id}} </script>
|
||||||
|
<title>ChatGPT</title>
|
||||||
|
</head>
|
||||||
|
<body>
|
||||||
|
<div class="gradient"></div>
|
||||||
|
<div class="row">
|
||||||
|
<div class="box conversations">
|
||||||
|
<div class="top">
|
||||||
|
<button class="new_convo" onclick="new_conversation()">
|
||||||
|
<i class="fa-regular fa-plus"></i>
|
||||||
|
<span>New Conversation</span>
|
||||||
|
</button>
|
||||||
|
<div class="spinner"></div>
|
||||||
|
</div>
|
||||||
|
<div class="bottom_buttons">
|
||||||
|
<button onclick="delete_conversations()">
|
||||||
|
<i class="fa-regular fa-trash"></i>
|
||||||
|
<span>Clear Conversations</span>
|
||||||
|
</button>
|
||||||
|
<div class="info">
|
||||||
|
<i class="fa-regular fa-circle-info"></i>
|
||||||
|
<span class="convo-title">By: Balsh<br>
|
||||||
|
Version: 0.0.6 <br>
|
||||||
|
Release: 2023-09-06<br>
|
||||||
|
</span>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div class="conversation disable-scrollbars">
|
||||||
|
<div class="stop_generating stop_generating-hidden">
|
||||||
|
<button id="cancelButton">
|
||||||
|
<span>Stop Generating</span>
|
||||||
|
<i class="fa-regular fa-stop"></i>
|
||||||
|
</button>
|
||||||
|
</div>
|
||||||
|
<div class="box" id="messages">
|
||||||
|
</div>
|
||||||
|
<div class="user-input">
|
||||||
|
<div class="box input-box">
|
||||||
|
<textarea id="message-input" placeholder="Ask a question" cols="30" rows="10" style="white-space: pre-wrap;" oninput="resizeTextarea(this)"></textarea>
|
||||||
|
<div id="send-button">
|
||||||
|
<i class="fa-regular fa-paper-plane-top"></i>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div class="buttons">
|
||||||
|
<div class="field">
|
||||||
|
<input type="checkbox" id="switch"/>
|
||||||
|
<label for="switch"></label>
|
||||||
|
<span class="about">Web Access</span>
|
||||||
|
</div>
|
||||||
|
<div class="field">
|
||||||
|
<select name="model" id="model">
|
||||||
|
## for m in model_list
|
||||||
|
{% if loop.index1 == 1 %}
|
||||||
|
<option value="{{ m }}" selected>{{ m }}</option>
|
||||||
|
{% else %}
|
||||||
|
<option value="{{ m }}">{{ m }}</option>
|
||||||
|
{% endif %}
|
||||||
|
## endfor
|
||||||
|
</select>
|
||||||
|
<!-- <span class="about">Model</span> -->
|
||||||
|
</div>
|
||||||
|
<div class="field">
|
||||||
|
<select name="jailbreak" id="jailbreak">
|
||||||
|
<option value="default" selected>default</option>
|
||||||
|
</select>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<form class="color-picker" action="">
|
||||||
|
<fieldset>
|
||||||
|
<legend class="visually-hidden">Pick a color scheme</legend>
|
||||||
|
<label for="light" class="visually-hidden">Light</label>
|
||||||
|
<input type="radio" title="light" name="theme" id="light" checked>
|
||||||
|
|
||||||
|
<label for="pink" class="visually-hidden">Pink theme</label>
|
||||||
|
<input type="radio" title="pink" id="pink" name="theme">
|
||||||
|
|
||||||
|
<label for="blue" class="visually-hidden">Blue theme</label>
|
||||||
|
<input type="radio" title="blue" id="blue" name="theme">
|
||||||
|
|
||||||
|
<label for="green" class="visually-hidden">Green theme</label>
|
||||||
|
<input type="radio" title="green" id="green" name="theme">
|
||||||
|
|
||||||
|
<label for="dark" class="visually-hidden">Dark theme</label>
|
||||||
|
<input type="radio" title="dark" id="dark" name="theme">
|
||||||
|
</fieldset>
|
||||||
|
</form>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div class="mobile-sidebar">
|
||||||
|
<i class="fa-solid fa-bars"></i>
|
||||||
|
</div>
|
||||||
|
</body>
|
||||||
</html>
|
</html>
|
||||||
|
Before Width: | Height: | Size: 9.3 KiB After Width: | Height: | Size: 8.7 KiB |
Before Width: | Height: | Size: 35 KiB After Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 8.6 KiB After Width: | Height: | Size: 7.8 KiB |
Before Width: | Height: | Size: 536 B After Width: | Height: | Size: 499 B |
Before Width: | Height: | Size: 1.2 KiB After Width: | Height: | Size: 1.0 KiB |
Before Width: | Height: | Size: 9.4 KiB After Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 2.0 KiB After Width: | Height: | Size: 2.8 KiB |
Before Width: | Height: | Size: 1.1 KiB After Width: | Height: | Size: 17 KiB |
@ -1,47 +0,0 @@
|
|||||||
document.addEventListener('DOMContentLoaded', fetchLanguages);
|
|
||||||
|
|
||||||
async function fetchLanguages() {
|
|
||||||
try {
|
|
||||||
const [languagesResponse, currentLanguageResponse] = await Promise.all([
|
|
||||||
fetch(`${url_prefix}/get-languages`),
|
|
||||||
fetch(`${url_prefix}/get-locale`)
|
|
||||||
]);
|
|
||||||
|
|
||||||
const languages = await languagesResponse.json();
|
|
||||||
const currentLanguage = await currentLanguageResponse.text();
|
|
||||||
|
|
||||||
const languageSelect = document.getElementById('language');
|
|
||||||
languages.forEach(lang => {
|
|
||||||
const option = document.createElement('option');
|
|
||||||
option.value = lang;
|
|
||||||
option.textContent = lang;
|
|
||||||
languageSelect.appendChild(option);
|
|
||||||
});
|
|
||||||
|
|
||||||
const savedLanguage = localStorage.getItem("language") || currentLanguage;
|
|
||||||
setLanguageOnPageLoad(savedLanguage);
|
|
||||||
} catch (error) {
|
|
||||||
console.error("Failed to fetch languages or current language");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function setLanguageOnPageLoad(language) {
|
|
||||||
document.getElementById("language").value = language;
|
|
||||||
}
|
|
||||||
|
|
||||||
function changeLanguage(lang) {
|
|
||||||
fetch(`${url_prefix}/change-language`, {
|
|
||||||
method: "POST",
|
|
||||||
headers: {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
},
|
|
||||||
body: JSON.stringify({ language: lang }),
|
|
||||||
}).then((response) => {
|
|
||||||
if (response.ok) {
|
|
||||||
localStorage.setItem("language", lang);
|
|
||||||
location.reload();
|
|
||||||
} else {
|
|
||||||
console.error("Failed to change language");
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
@ -1,84 +1,105 @@
|
|||||||
const query = (obj) =>
|
const query = (obj) =>
|
||||||
Object.keys(obj)
|
Object.keys(obj)
|
||||||
.map((k) => encodeURIComponent(k) + "=" + encodeURIComponent(obj[k]))
|
.map((k) => encodeURIComponent(k) + "=" + encodeURIComponent(obj[k]))
|
||||||
.join("&");
|
.join("&");
|
||||||
const url_prefix = document.querySelector("body").getAttribute("data-urlprefix");
|
const colorThemes = document.querySelectorAll('[name="theme"]');
|
||||||
const markdown = window.markdownit();
|
const markdown = window.markdownit();
|
||||||
const message_box = document.getElementById(`messages`);
|
const message_box = document.getElementById(`messages`);
|
||||||
const message_input = document.getElementById(`message-input`);
|
const message_input = document.getElementById(`message-input`);
|
||||||
const box_conversations = document.querySelector(`.top`);
|
const box_conversations = document.querySelector(`.top`);
|
||||||
const spinner = box_conversations.querySelector(".spinner");
|
const spinner = box_conversations.querySelector(".spinner");
|
||||||
const stop_generating = document.querySelector(`.stop-generating`);
|
const stop_generating = document.querySelector(`.stop_generating`);
|
||||||
const send_button = document.querySelector(`#send-button`);
|
const send_button = document.querySelector(`#send-button`);
|
||||||
const user_image = `<img src="${url_prefix}/assets/img/user.png" alt="User Avatar">`;
|
|
||||||
const gpt_image = `<img src="${url_prefix}/assets/img/gpt.png" alt="GPT Avatar">`;
|
|
||||||
let prompt_lock = false;
|
let prompt_lock = false;
|
||||||
|
|
||||||
hljs.addPlugin(new CopyButtonPlugin());
|
hljs.addPlugin(new CopyButtonPlugin());
|
||||||
|
|
||||||
|
function resizeTextarea(textarea) {
|
||||||
|
textarea.style.height = '80px';
|
||||||
|
textarea.style.height = Math.min(textarea.scrollHeight, 200) + 'px';
|
||||||
|
}
|
||||||
|
|
||||||
|
const format = (text) => {
|
||||||
|
return text.replace(/(?:\r\n|\r|\n)/g, "<br>");
|
||||||
|
};
|
||||||
|
|
||||||
message_input.addEventListener("blur", () => {
|
message_input.addEventListener("blur", () => {
|
||||||
window.scrollTo(0, 0);
|
window.scrollTo(0, 0);
|
||||||
});
|
});
|
||||||
|
|
||||||
message_input.addEventListener("focus", () => {
|
message_input.addEventListener("focus", () => {
|
||||||
document.documentElement.scrollTop = document.documentElement.scrollHeight;
|
document.documentElement.scrollTop = document.documentElement.scrollHeight;
|
||||||
});
|
});
|
||||||
|
|
||||||
const delete_conversations = async () => {
|
const delete_conversations = async () => {
|
||||||
localStorage.clear();
|
localStorage.clear();
|
||||||
await new_conversation();
|
await new_conversation();
|
||||||
};
|
};
|
||||||
|
|
||||||
const handle_ask = async () => {
|
const handle_ask = async () => {
|
||||||
message_input.style.height = `80px`;
|
message_input.style.height = `80px`;
|
||||||
window.scrollTo(0, 0);
|
message_input.focus();
|
||||||
let message = message_input.value;
|
|
||||||
|
|
||||||
if (message.length > 0) {
|
window.scrollTo(0, 0);
|
||||||
message_input.value = ``;
|
let message = message_input.value;
|
||||||
message_input.dispatchEvent(new Event("input"));
|
|
||||||
await ask_gpt(message);
|
if (message.length > 0) {
|
||||||
}
|
message_input.value = ``;
|
||||||
|
await ask_gpt(message);
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
const remove_cancel_button = async () => {
|
const remove_cancel_button = async () => {
|
||||||
stop_generating.classList.add(`stop-generating-hiding`);
|
stop_generating.classList.add(`stop_generating-hiding`);
|
||||||
|
|
||||||
setTimeout(() => {
|
setTimeout(() => {
|
||||||
stop_generating.classList.remove(`stop-generating-hiding`);
|
stop_generating.classList.remove(`stop_generating-hiding`);
|
||||||
stop_generating.classList.add(`stop-generating-hidden`);
|
stop_generating.classList.add(`stop_generating-hidden`);
|
||||||
}, 300);
|
}, 300);
|
||||||
};
|
};
|
||||||
|
|
||||||
const ask_gpt = async (message) => {
|
const ask_gpt = async (message) => {
|
||||||
try {
|
try {
|
||||||
message_input.value = ``;
|
message_input.value = ``;
|
||||||
message_input.innerHTML = ``;
|
message_input.innerHTML = ``;
|
||||||
message_input.innerText = ``;
|
message_input.innerText = ``;
|
||||||
|
|
||||||
add_conversation(window.conversation_id, message.substr(0, 16));
|
add_conversation(window.conversation_id, message.substr(0, 20));
|
||||||
window.scrollTo(0, 0);
|
window.scrollTo(0, 0);
|
||||||
window.controller = new AbortController();
|
window.controller = new AbortController();
|
||||||
|
|
||||||
jailbreak = document.getElementById("jailbreak");
|
jailbreak = document.getElementById("jailbreak");
|
||||||
model = document.getElementById("model");
|
model = document.getElementById("model");
|
||||||
prompt_lock = true;
|
prompt_lock = true;
|
||||||
window.text = ``;
|
window.text = ``;
|
||||||
window.token = message_id();
|
window.token = message_id();
|
||||||
|
|
||||||
stop_generating.classList.remove(`stop-generating-hidden`);
|
stop_generating.classList.remove(`stop_generating-hidden`);
|
||||||
|
|
||||||
add_user_message_box(message);
|
message_box.innerHTML += `
|
||||||
|
|
||||||
message_box.scrollTop = message_box.scrollHeight;
|
|
||||||
window.scrollTo(0, 0);
|
|
||||||
await new Promise((r) => setTimeout(r, 500));
|
|
||||||
window.scrollTo(0, 0);
|
|
||||||
|
|
||||||
message_box.innerHTML += `
|
|
||||||
<div class="message">
|
<div class="message">
|
||||||
<div class="avatar-container">
|
<div class="user">
|
||||||
${gpt_image}
|
${user_image}
|
||||||
|
<i class="fa-regular fa-phone-arrow-up-right"></i>
|
||||||
|
</div>
|
||||||
|
<div class="content" id="user_${token}">
|
||||||
|
${format(message)}
|
||||||
|
</div>
|
||||||
|
<i class="fa fa-trash trash-icon" onclick="deleteMessage('${token}')"></i>
|
||||||
|
</div>
|
||||||
|
`;
|
||||||
|
|
||||||
|
/* .replace(/(?:\r\n|\r|\n)/g, '<br>') */
|
||||||
|
|
||||||
|
message_box.scrollTop = message_box.scrollHeight;
|
||||||
|
window.scrollTo(0, 0);
|
||||||
|
await new Promise((r) => setTimeout(r, 500));
|
||||||
|
window.scrollTo(0, 0);
|
||||||
|
|
||||||
|
message_box.innerHTML += `
|
||||||
|
<div class="message">
|
||||||
|
<div class="user">
|
||||||
|
${gpt_image} <i class="fa-regular fa-phone-arrow-down-left"></i>
|
||||||
</div>
|
</div>
|
||||||
<div class="content" id="gpt_${window.token}">
|
<div class="content" id="gpt_${window.token}">
|
||||||
<div id="cursor"></div>
|
<div id="cursor"></div>
|
||||||
@ -86,423 +107,493 @@ const ask_gpt = async (message) => {
|
|||||||
</div>
|
</div>
|
||||||
`;
|
`;
|
||||||
|
|
||||||
message_box.scrollTop = message_box.scrollHeight;
|
message_box.scrollTop = message_box.scrollHeight;
|
||||||
window.scrollTo(0, 0);
|
window.scrollTo(0, 0);
|
||||||
await new Promise((r) => setTimeout(r, 1000));
|
await new Promise((r) => setTimeout(r, 1000));
|
||||||
window.scrollTo(0, 0);
|
window.scrollTo(0, 0);
|
||||||
|
|
||||||
const response = await fetch(`${url_prefix}/backend-api/v2/conversation`, {
|
const response = await fetch(`/backend-api/v2/conversation`, {
|
||||||
method: `POST`,
|
method: `POST`,
|
||||||
signal: window.controller.signal,
|
signal: window.controller.signal,
|
||||||
headers: {
|
headers: {
|
||||||
"content-type": `application/json`,
|
"content-type": `application/json`,
|
||||||
accept: `text/event-stream`,
|
accept: `text/event-stream`,
|
||||||
},
|
},
|
||||||
body: JSON.stringify({
|
body: JSON.stringify({
|
||||||
conversation_id: window.conversation_id,
|
conversation_id: window.conversation_id,
|
||||||
action: `_ask`,
|
action: `_ask`,
|
||||||
model: model.options[model.selectedIndex].value,
|
model: model.options[model.selectedIndex].value,
|
||||||
jailbreak: jailbreak.options[jailbreak.selectedIndex].value,
|
jailbreak: jailbreak.options[jailbreak.selectedIndex].value,
|
||||||
meta: {
|
meta: {
|
||||||
id: window.token,
|
id: window.token,
|
||||||
content: {
|
content: {
|
||||||
conversation: await get_conversation(window.conversation_id),
|
conversation: await get_conversation(window.conversation_id),
|
||||||
internet_access: document.getElementById("switch").checked,
|
internet_access: document.getElementById("switch").checked,
|
||||||
content_type: "text",
|
content_type: "text",
|
||||||
parts: [
|
parts: [
|
||||||
{
|
{
|
||||||
content: message,
|
content: message,
|
||||||
role: "user",
|
role: "user",
|
||||||
},
|
},
|
||||||
],
|
],
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
}),
|
}),
|
||||||
});
|
});
|
||||||
|
|
||||||
const reader = response.body.getReader();
|
const reader = response.body.getReader();
|
||||||
|
|
||||||
while (true) {
|
while (true) {
|
||||||
const { value, done } = await reader.read();
|
const { value, done } = await reader.read();
|
||||||
if (done) break;
|
if (done) break;
|
||||||
|
|
||||||
chunk = decodeUnicode(new TextDecoder().decode(value));
|
chunk = new TextDecoder().decode(value);
|
||||||
|
|
||||||
if (
|
if (
|
||||||
chunk.includes(`<form id="challenge-form" action="${url_prefix}/backend-api/v2/conversation?`)
|
chunk.includes(
|
||||||
) {
|
`<form id="challenge-form" action="/backend-api/v2/conversation?`
|
||||||
chunk = `cloudflare token expired, please refresh the page.`;
|
)
|
||||||
}
|
) {
|
||||||
|
chunk = `cloudflare token expired, please refresh the page.`;
|
||||||
|
}
|
||||||
|
|
||||||
text += chunk;
|
text += chunk;
|
||||||
|
|
||||||
document.getElementById(`gpt_${window.token}`).innerHTML = markdown.render(text);
|
// const objects = chunk.match(/({.+?})/g);
|
||||||
document.querySelectorAll(`code`).forEach((el) => {
|
|
||||||
hljs.highlightElement(el);
|
|
||||||
});
|
|
||||||
|
|
||||||
window.scrollTo(0, 0);
|
// try { if (JSON.parse(objects[0]).success === false) throw new Error(JSON.parse(objects[0]).error) } catch (e) {}
|
||||||
message_box.scrollTo({ top: message_box.scrollHeight, behavior: "auto" });
|
|
||||||
}
|
|
||||||
|
|
||||||
// if text contains :
|
// objects.forEach((object) => {
|
||||||
if (text.includes(`instead. Maintaining this website and API costs a lot of money`)) {
|
// console.log(object)
|
||||||
document.getElementById(`gpt_${window.token}`).innerHTML =
|
// try { text += h2a(JSON.parse(object).content) } catch(t) { console.log(t); throw new Error(t)}
|
||||||
"An error occurred, please reload / refresh cache and try again.";
|
// });
|
||||||
}
|
|
||||||
|
|
||||||
add_message(window.conversation_id, "user", message);
|
document.getElementById(`gpt_${window.token}`).innerHTML =
|
||||||
add_message(window.conversation_id, "assistant", text);
|
markdown.render(text);
|
||||||
|
document.querySelectorAll(`code`).forEach((el) => {
|
||||||
|
hljs.highlightElement(el);
|
||||||
|
});
|
||||||
|
|
||||||
message_box.scrollTop = message_box.scrollHeight;
|
window.scrollTo(0, 0);
|
||||||
await remove_cancel_button();
|
message_box.scrollTo({ top: message_box.scrollHeight, behavior: "auto" });
|
||||||
prompt_lock = false;
|
}
|
||||||
|
|
||||||
await load_conversations(20, 0);
|
// if text contains :
|
||||||
window.scrollTo(0, 0);
|
if (
|
||||||
} catch (e) {
|
text.includes(
|
||||||
add_message(window.conversation_id, "user", message);
|
`instead. Maintaining this website and API costs a lot of money`
|
||||||
|
)
|
||||||
|
) {
|
||||||
|
document.getElementById(`gpt_${window.token}`).innerHTML =
|
||||||
|
"An error occured, please reload / refresh cache and try again.";
|
||||||
|
}
|
||||||
|
|
||||||
message_box.scrollTop = message_box.scrollHeight;
|
add_message(window.conversation_id, "user", message, token);
|
||||||
await remove_cancel_button();
|
add_message(window.conversation_id, "assistant", text, token);
|
||||||
prompt_lock = false;
|
|
||||||
|
|
||||||
await load_conversations(20, 0);
|
message_box.scrollTop = message_box.scrollHeight;
|
||||||
|
await remove_cancel_button();
|
||||||
|
prompt_lock = false;
|
||||||
|
|
||||||
console.log(e);
|
await load_conversations(20, 0);
|
||||||
|
window.scrollTo(0, 0);
|
||||||
|
} catch (e) {
|
||||||
|
add_message(window.conversation_id, "user", message, token);
|
||||||
|
|
||||||
let cursorDiv = document.getElementById(`cursor`);
|
message_box.scrollTop = message_box.scrollHeight;
|
||||||
if (cursorDiv) cursorDiv.parentNode.removeChild(cursorDiv);
|
await remove_cancel_button();
|
||||||
|
prompt_lock = false;
|
||||||
|
|
||||||
if (e.name != `AbortError`) {
|
await load_conversations(20, 0);
|
||||||
let error_message = `oops ! something went wrong, please try again / reload. [stacktrace in console]`;
|
|
||||||
|
|
||||||
document.getElementById(`gpt_${window.token}`).innerHTML = error_message;
|
console.log(e);
|
||||||
add_message(window.conversation_id, "assistant", error_message);
|
|
||||||
} else {
|
|
||||||
document.getElementById(`gpt_${window.token}`).innerHTML += ` [aborted]`;
|
|
||||||
add_message(window.conversation_id, "assistant", text + ` [aborted]`);
|
|
||||||
}
|
|
||||||
|
|
||||||
window.scrollTo(0, 0);
|
let cursorDiv = document.getElementById(`cursor`);
|
||||||
}
|
if (cursorDiv) cursorDiv.parentNode.removeChild(cursorDiv);
|
||||||
};
|
|
||||||
|
|
||||||
const add_user_message_box = (message) => {
|
if (e.name != `AbortError`) {
|
||||||
const messageDiv = createElement("div", { classNames: ["message"] });
|
let error_message = `oops ! something went wrong, please try again / reload. [stacktrace in console]`;
|
||||||
const avatarContainer = createElement("div", { classNames: ["avatar-container"], innerHTML: user_image });
|
|
||||||
const contentDiv = createElement("div", {
|
|
||||||
classNames: ["content"],
|
|
||||||
id: `user_${token}`,
|
|
||||||
textContent: message,
|
|
||||||
});
|
|
||||||
|
|
||||||
messageDiv.append(avatarContainer, contentDiv);
|
document.getElementById(`gpt_${window.token}`).innerHTML = error_message;
|
||||||
message_box.appendChild(messageDiv);
|
add_message(window.conversation_id, "assistant", error_message, token);
|
||||||
};
|
} else {
|
||||||
|
document.getElementById(`gpt_${window.token}`).innerHTML += ` [aborted]`;
|
||||||
|
add_message(window.conversation_id, "assistant", text + ` [aborted]`, token);
|
||||||
|
}
|
||||||
|
|
||||||
const decodeUnicode = (str) => {
|
window.scrollTo(0, 0);
|
||||||
return str.replace(/\\u([a-fA-F0-9]{4})/g, function (match, grp) {
|
}
|
||||||
return String.fromCharCode(parseInt(grp, 16));
|
|
||||||
});
|
|
||||||
};
|
};
|
||||||
|
|
||||||
const clear_conversations = async () => {
|
const clear_conversations = async () => {
|
||||||
const elements = box_conversations.childNodes;
|
const elements = box_conversations.childNodes;
|
||||||
let index = elements.length;
|
let index = elements.length;
|
||||||
|
|
||||||
if (index > 0) {
|
if (index > 0) {
|
||||||
while (index--) {
|
while (index--) {
|
||||||
const element = elements[index];
|
const element = elements[index];
|
||||||
if (element.nodeType === Node.ELEMENT_NODE && element.tagName.toLowerCase() !== `button`) {
|
if (
|
||||||
box_conversations.removeChild(element);
|
element.nodeType === Node.ELEMENT_NODE &&
|
||||||
}
|
element.tagName.toLowerCase() !== `button`
|
||||||
}
|
) {
|
||||||
}
|
box_conversations.removeChild(element);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
const clear_conversation = async () => {
|
const clear_conversation = async () => {
|
||||||
let messages = message_box.getElementsByTagName(`div`);
|
let messages = message_box.getElementsByTagName(`div`);
|
||||||
|
|
||||||
while (messages.length > 0) {
|
while (messages.length > 0) {
|
||||||
message_box.removeChild(messages[0]);
|
message_box.removeChild(messages[0]);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
const show_option = async (conversation_id) => {
|
||||||
|
const conv = document.getElementById(`conv-${conversation_id}`);
|
||||||
|
const yes = document.getElementById(`yes-${conversation_id}`);
|
||||||
|
const not = document.getElementById(`not-${conversation_id}`);
|
||||||
|
|
||||||
|
conv.style.display = "none";
|
||||||
|
yes.style.display = "block";
|
||||||
|
not.style.display = "block";
|
||||||
|
}
|
||||||
|
|
||||||
|
const hide_option = async (conversation_id) => {
|
||||||
|
const conv = document.getElementById(`conv-${conversation_id}`);
|
||||||
|
const yes = document.getElementById(`yes-${conversation_id}`);
|
||||||
|
const not = document.getElementById(`not-${conversation_id}`);
|
||||||
|
|
||||||
|
conv.style.display = "block";
|
||||||
|
yes.style.display = "none";
|
||||||
|
not.style.display = "none";
|
||||||
|
}
|
||||||
|
|
||||||
const delete_conversation = async (conversation_id) => {
|
const delete_conversation = async (conversation_id) => {
|
||||||
localStorage.removeItem(`conversation:${conversation_id}`);
|
localStorage.removeItem(`conversation:${conversation_id}`);
|
||||||
|
|
||||||
if (window.conversation_id == conversation_id) {
|
const conversation = document.getElementById(`convo-${conversation_id}`);
|
||||||
await new_conversation();
|
conversation.remove();
|
||||||
}
|
|
||||||
|
|
||||||
await load_conversations(20, 0, true);
|
if (window.conversation_id == conversation_id) {
|
||||||
|
await new_conversation();
|
||||||
|
}
|
||||||
|
|
||||||
|
await load_conversations(20, 0, true);
|
||||||
};
|
};
|
||||||
|
|
||||||
const set_conversation = async (conversation_id) => {
|
const set_conversation = async (conversation_id) => {
|
||||||
history.pushState({}, null, `${url_prefix}/chat/${conversation_id}`);
|
history.pushState({}, null, `{{chat_path}}/${conversation_id}`);
|
||||||
window.conversation_id = conversation_id;
|
window.conversation_id = conversation_id;
|
||||||
|
|
||||||
await clear_conversation();
|
await clear_conversation();
|
||||||
await load_conversation(conversation_id);
|
await load_conversation(conversation_id);
|
||||||
await load_conversations(20, 0, true);
|
await load_conversations(20, 0, true);
|
||||||
};
|
};
|
||||||
|
|
||||||
const new_conversation = async () => {
|
const new_conversation = async () => {
|
||||||
history.pushState({}, null, `${url_prefix}/chat/`);
|
history.pushState({}, null, `{{chat_path}}/`);
|
||||||
window.conversation_id = uuid();
|
window.conversation_id = uuid();
|
||||||
|
|
||||||
await clear_conversation();
|
await clear_conversation();
|
||||||
await load_conversations(20, 0, true);
|
await load_conversations(20, 0, true);
|
||||||
};
|
};
|
||||||
|
|
||||||
const load_conversation = async (conversation_id) => {
|
const load_conversation = async (conversation_id) => {
|
||||||
let conversation = await JSON.parse(localStorage.getItem(`conversation:${conversation_id}`));
|
let conversation = await JSON.parse(
|
||||||
console.log(conversation, conversation_id);
|
localStorage.getItem(`conversation:${conversation_id}`)
|
||||||
|
);
|
||||||
|
console.log(conversation, conversation_id);
|
||||||
|
|
||||||
for (item of conversation.items) {
|
for (item of conversation.items) {
|
||||||
if (is_assistant(item.role)) {
|
message_box.innerHTML += `
|
||||||
message_box.innerHTML += load_gpt_message_box(item.content);
|
|
||||||
} else {
|
|
||||||
message_box.innerHTML += load_user_message_box(item.content);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
document.querySelectorAll(`code`).forEach((el) => {
|
|
||||||
hljs.highlightElement(el);
|
|
||||||
});
|
|
||||||
|
|
||||||
message_box.scrollTo({ top: message_box.scrollHeight, behavior: "smooth" });
|
|
||||||
|
|
||||||
setTimeout(() => {
|
|
||||||
message_box.scrollTop = message_box.scrollHeight;
|
|
||||||
}, 500);
|
|
||||||
};
|
|
||||||
|
|
||||||
const load_user_message_box = (content) => {
|
|
||||||
const messageDiv = createElement("div", { classNames: ["message"] });
|
|
||||||
const avatarContainer = createElement("div", { classNames: ["avatar-container"], innerHTML: user_image });
|
|
||||||
const contentDiv = createElement("div", { classNames: ["content"] });
|
|
||||||
const preElement = document.createElement("pre");
|
|
||||||
preElement.textContent = content;
|
|
||||||
contentDiv.appendChild(preElement);
|
|
||||||
|
|
||||||
messageDiv.append(avatarContainer, contentDiv);
|
|
||||||
|
|
||||||
return messageDiv.outerHTML;
|
|
||||||
};
|
|
||||||
|
|
||||||
const load_gpt_message_box = (content) => {
|
|
||||||
return `
|
|
||||||
<div class="message">
|
<div class="message">
|
||||||
<div class="avatar-container">
|
<div class="user">
|
||||||
${gpt_image}
|
${item.role == "assistant" ? gpt_image : user_image}
|
||||||
|
${
|
||||||
|
item.role == "assistant"
|
||||||
|
? `<i class="fa-regular fa-phone-arrow-down-left"></i>`
|
||||||
|
: `<i class="fa-regular fa-phone-arrow-up-right"></i>`
|
||||||
|
}
|
||||||
</div>
|
</div>
|
||||||
<div class="content">
|
${
|
||||||
${markdown.render(content)}
|
item.role == "user"
|
||||||
|
? `<div class="content" id="user_${item.token}">`
|
||||||
|
: `<div class="content" id="gpt_${item.token}">`
|
||||||
|
}
|
||||||
|
${
|
||||||
|
item.role == "assistant"
|
||||||
|
? markdown.render(item.content)
|
||||||
|
: item.content
|
||||||
|
}
|
||||||
</div>
|
</div>
|
||||||
|
${
|
||||||
|
item.role == "user"
|
||||||
|
? `<i class="fa fa-trash trash-icon" onclick="deleteMessage('${item.token}')"></i>`
|
||||||
|
: ''
|
||||||
|
}
|
||||||
</div>
|
</div>
|
||||||
`;
|
`;
|
||||||
};
|
}
|
||||||
|
|
||||||
const is_assistant = (role) => {
|
document.querySelectorAll(`code`).forEach((el) => {
|
||||||
return role == "assistant";
|
hljs.highlightElement(el);
|
||||||
|
});
|
||||||
|
|
||||||
|
message_box.scrollTo({ top: message_box.scrollHeight, behavior: "smooth" });
|
||||||
|
|
||||||
|
setTimeout(() => {
|
||||||
|
message_box.scrollTop = message_box.scrollHeight;
|
||||||
|
}, 500);
|
||||||
};
|
};
|
||||||
|
|
||||||
const get_conversation = async (conversation_id) => {
|
const get_conversation = async (conversation_id) => {
|
||||||
let conversation = await JSON.parse(localStorage.getItem(`conversation:${conversation_id}`));
|
let conversation = await JSON.parse(
|
||||||
return conversation.items;
|
localStorage.getItem(`conversation:${conversation_id}`)
|
||||||
|
);
|
||||||
|
let result = conversation.items.slice(-4)
|
||||||
|
for (var i = 0; i < result.length; i++) {
|
||||||
|
delete result[i].token;
|
||||||
|
console.log(result[i]);
|
||||||
|
console.log(result[i]);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
};
|
};
|
||||||
|
|
||||||
const add_conversation = async (conversation_id, title) => {
|
const add_conversation = async (conversation_id, title) => {
|
||||||
if (localStorage.getItem(`conversation:${conversation_id}`) == null) {
|
if (localStorage.getItem(`conversation:${conversation_id}`) == null) {
|
||||||
localStorage.setItem(
|
localStorage.setItem(
|
||||||
`conversation:${conversation_id}`,
|
`conversation:${conversation_id}`,
|
||||||
JSON.stringify({
|
JSON.stringify({
|
||||||
id: conversation_id,
|
id: conversation_id,
|
||||||
title: title,
|
title: title,
|
||||||
items: [],
|
items: [],
|
||||||
})
|
})
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
const add_message = async (conversation_id, role, content) => {
|
const add_message = async (conversation_id, role, content, token) => {
|
||||||
before_adding = JSON.parse(localStorage.getItem(`conversation:${conversation_id}`));
|
before_adding = JSON.parse(
|
||||||
|
localStorage.getItem(`conversation:${conversation_id}`)
|
||||||
|
);
|
||||||
|
|
||||||
before_adding.items.push({
|
before_adding.items.push({
|
||||||
role: role,
|
role: role,
|
||||||
content: content,
|
content: content,
|
||||||
});
|
token: token,
|
||||||
|
});
|
||||||
|
|
||||||
localStorage.setItem(`conversation:${conversation_id}`, JSON.stringify(before_adding)); // update conversation
|
localStorage.setItem(
|
||||||
|
`conversation:${conversation_id}`,
|
||||||
|
JSON.stringify(before_adding)
|
||||||
|
); // update conversation
|
||||||
};
|
};
|
||||||
|
|
||||||
const load_conversations = async (limit, offset, loader) => {
|
const load_conversations = async (limit, offset, loader) => {
|
||||||
//console.log(loader);
|
//console.log(loader);
|
||||||
//if (loader === undefined) box_conversations.appendChild(spinner);
|
//if (loader === undefined) box_conversations.appendChild(spinner);
|
||||||
|
|
||||||
let conversations = [];
|
let conversations = [];
|
||||||
for (let i = 0; i < localStorage.length; i++) {
|
for (let i = 0; i < localStorage.length; i++) {
|
||||||
if (localStorage.key(i).startsWith("conversation:")) {
|
if (localStorage.key(i).startsWith("conversation:")) {
|
||||||
let conversation = localStorage.getItem(localStorage.key(i));
|
let conversation = localStorage.getItem(localStorage.key(i));
|
||||||
conversations.push(JSON.parse(conversation));
|
conversations.push(JSON.parse(conversation));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//if (loader === undefined) spinner.parentNode.removeChild(spinner)
|
//if (loader === undefined) spinner.parentNode.removeChild(spinner)
|
||||||
await clear_conversations();
|
await clear_conversations();
|
||||||
|
|
||||||
for (conversation of conversations) {
|
for (conversation of conversations) {
|
||||||
box_conversations.innerHTML += `
|
box_conversations.innerHTML += `
|
||||||
<div class="conversation-sidebar">
|
<div class="convo" id="convo-${conversation.id}">
|
||||||
<div class="left" onclick="set_conversation('${conversation.id}')">
|
<div class="left" onclick="set_conversation('${conversation.id}')">
|
||||||
<i class="fa-regular fa-comments"></i>
|
<i class="fa-regular fa-comments"></i>
|
||||||
<span class="conversation-title">${conversation.title}</span>
|
<span class="convo-title">${conversation.title}</span>
|
||||||
</div>
|
</div>
|
||||||
<i onclick="delete_conversation('${conversation.id}')" class="fa-regular fa-trash"></i>
|
<i onclick="show_option('${conversation.id}')" class="fa-regular fa-trash" id="conv-${conversation.id}"></i>
|
||||||
</div>
|
<i onclick="delete_conversation('${conversation.id}')" class="fa-regular fa-check" id="yes-${conversation.id}" style="display:none;"></i>
|
||||||
`;
|
<i onclick="hide_option('${conversation.id}')" class="fa-regular fa-x" id="not-${conversation.id}" style="display:none;"></i>
|
||||||
}
|
</div>
|
||||||
|
`;
|
||||||
|
}
|
||||||
|
|
||||||
document.querySelectorAll(`code`).forEach((el) => {
|
document.querySelectorAll(`code`).forEach((el) => {
|
||||||
hljs.highlightElement(el);
|
hljs.highlightElement(el);
|
||||||
});
|
});
|
||||||
};
|
};
|
||||||
|
|
||||||
document.getElementById(`cancelButton`).addEventListener(`click`, async () => {
|
document.getElementById(`cancelButton`).addEventListener(`click`, async () => {
|
||||||
window.controller.abort();
|
window.controller.abort();
|
||||||
console.log(`aborted ${window.conversation_id}`);
|
console.log(`aborted ${window.conversation_id}`);
|
||||||
});
|
});
|
||||||
|
|
||||||
function h2a(str1) {
|
function h2a(str1) {
|
||||||
var hex = str1.toString();
|
var hex = str1.toString();
|
||||||
var str = "";
|
var str = "";
|
||||||
|
|
||||||
for (var n = 0; n < hex.length; n += 2) {
|
for (var n = 0; n < hex.length; n += 2) {
|
||||||
str += String.fromCharCode(parseInt(hex.substr(n, 2), 16));
|
str += String.fromCharCode(parseInt(hex.substr(n, 2), 16));
|
||||||
}
|
}
|
||||||
|
|
||||||
return str;
|
return str;
|
||||||
}
|
}
|
||||||
|
|
||||||
const uuid = () => {
|
const uuid = () => {
|
||||||
return `xxxxxxxx-xxxx-4xxx-yxxx-${Date.now().toString(16)}`.replace(/[xy]/g, function (c) {
|
return `xxxxxxxx-xxxx-4xxx-yxxx-${Date.now().toString(16)}`.replace(
|
||||||
var r = (Math.random() * 16) | 0,
|
/[xy]/g,
|
||||||
v = c == "x" ? r : (r & 0x3) | 0x8;
|
function (c) {
|
||||||
return v.toString(16);
|
var r = (Math.random() * 16) | 0,
|
||||||
});
|
v = c == "x" ? r : (r & 0x3) | 0x8;
|
||||||
|
return v.toString(16);
|
||||||
|
}
|
||||||
|
);
|
||||||
};
|
};
|
||||||
|
|
||||||
const message_id = () => {
|
const message_id = () => {
|
||||||
random_bytes = (Math.floor(Math.random() * 1338377565) + 2956589730).toString(2);
|
random_bytes = (Math.floor(Math.random() * 1338377565) + 2956589730).toString(
|
||||||
unix = Math.floor(Date.now() / 1000).toString(2);
|
2
|
||||||
|
);
|
||||||
|
unix = Math.floor(Date.now() / 1000).toString(2);
|
||||||
|
|
||||||
return BigInt(`0b${unix}${random_bytes}`).toString();
|
return BigInt(`0b${unix}${random_bytes}`).toString();
|
||||||
};
|
};
|
||||||
|
|
||||||
window.onload = async () => {
|
window.onload = async () => {
|
||||||
load_settings_localstorage();
|
load_settings_localstorage();
|
||||||
|
|
||||||
conversations = 0;
|
conversations = 0;
|
||||||
for (let i = 0; i < localStorage.length; i++) {
|
for (let i = 0; i < localStorage.length; i++) {
|
||||||
if (localStorage.key(i).startsWith("conversation:")) {
|
if (localStorage.key(i).startsWith("conversation:")) {
|
||||||
conversations += 1;
|
conversations += 1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (conversations == 0) localStorage.clear();
|
if (conversations == 0) localStorage.clear();
|
||||||
|
|
||||||
await setTimeout(() => {
|
await setTimeout(() => {
|
||||||
load_conversations(20, 0);
|
load_conversations(20, 0);
|
||||||
}, 1);
|
}, 1);
|
||||||
|
|
||||||
if (!window.location.href.endsWith(`#`)) {
|
if (!window.location.href.endsWith(`#`)) {
|
||||||
if (/\/chat\/.+/.test(window.location.href.slice(url_prefix.length))) {
|
if (/\{{chat_path}}\/.+/.test(window.location.href)) {
|
||||||
await load_conversation(window.conversation_id);
|
await load_conversation(window.conversation_id);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
message_input.addEventListener("keydown", async (evt) => {
|
message_input.addEventListener(`keydown`, async (evt) => {
|
||||||
if (prompt_lock) return;
|
if (prompt_lock) return;
|
||||||
|
if (evt.keyCode === 13 && !evt.shiftKey) {
|
||||||
|
evt.preventDefault();
|
||||||
|
console.log('pressed enter');
|
||||||
|
await handle_ask();
|
||||||
|
} else {
|
||||||
|
message_input.style.removeProperty("height");
|
||||||
|
message_input.style.height = message_input.scrollHeight + 4 + "px";
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
if (evt.key === "Enter" && !evt.shiftKey) {
|
send_button.addEventListener(`click`, async () => {
|
||||||
evt.preventDefault();
|
console.log("clicked send");
|
||||||
await handle_ask();
|
if (prompt_lock) return;
|
||||||
}
|
await handle_ask();
|
||||||
});
|
});
|
||||||
|
|
||||||
send_button.addEventListener("click", async (event) => {
|
register_settings_localstorage();
|
||||||
event.preventDefault();
|
|
||||||
if (prompt_lock) return;
|
|
||||||
message_input.blur();
|
|
||||||
await handle_ask();
|
|
||||||
});
|
|
||||||
|
|
||||||
register_settings_localstorage();
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
document.querySelector(".mobile-sidebar").addEventListener("click", (event) => {
|
||||||
|
const sidebar = document.querySelector(".conversations");
|
||||||
|
|
||||||
|
if (sidebar.classList.contains("shown")) {
|
||||||
|
sidebar.classList.remove("shown");
|
||||||
|
event.target.classList.remove("rotated");
|
||||||
|
} else {
|
||||||
|
sidebar.classList.add("shown");
|
||||||
|
event.target.classList.add("rotated");
|
||||||
|
}
|
||||||
|
|
||||||
|
window.scrollTo(0, 0);
|
||||||
|
});
|
||||||
|
|
||||||
const register_settings_localstorage = async () => {
|
const register_settings_localstorage = async () => {
|
||||||
settings_ids = ["switch", "model", "jailbreak"];
|
settings_ids = ["switch", "model", "jailbreak"];
|
||||||
settings_elements = settings_ids.map((id) => document.getElementById(id));
|
settings_elements = settings_ids.map((id) => document.getElementById(id));
|
||||||
settings_elements.map((element) =>
|
settings_elements.map((element) =>
|
||||||
element.addEventListener(`change`, async (event) => {
|
element.addEventListener(`change`, async (event) => {
|
||||||
switch (event.target.type) {
|
switch (event.target.type) {
|
||||||
case "checkbox":
|
case "checkbox":
|
||||||
localStorage.setItem(event.target.id, event.target.checked);
|
localStorage.setItem(event.target.id, event.target.checked);
|
||||||
break;
|
break;
|
||||||
case "select-one":
|
case "select-one":
|
||||||
localStorage.setItem(event.target.id, event.target.selectedIndex);
|
localStorage.setItem(event.target.id, event.target.selectedIndex);
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
console.warn("Unresolved element type");
|
console.warn("Unresolved element type");
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
);
|
);
|
||||||
};
|
};
|
||||||
|
|
||||||
const load_settings_localstorage = async () => {
|
const load_settings_localstorage = async () => {
|
||||||
settings_ids = ["switch", "model", "jailbreak"];
|
settings_ids = ["switch", "model", "jailbreak"];
|
||||||
settings_elements = settings_ids.map((id) => document.getElementById(id));
|
settings_elements = settings_ids.map((id) => document.getElementById(id));
|
||||||
settings_elements.map((element) => {
|
settings_elements.map((element) => {
|
||||||
if (localStorage.getItem(element.id)) {
|
if (localStorage.getItem(element.id)) {
|
||||||
switch (element.type) {
|
switch (element.type) {
|
||||||
case "checkbox":
|
case "checkbox":
|
||||||
element.checked = localStorage.getItem(element.id) === "true";
|
element.checked = localStorage.getItem(element.id) === "true";
|
||||||
break;
|
break;
|
||||||
case "select-one":
|
case "select-one":
|
||||||
element.selectedIndex = parseInt(localStorage.getItem(element.id));
|
element.selectedIndex = parseInt(localStorage.getItem(element.id));
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
console.warn("Unresolved element type");
|
console.warn("Unresolved element type");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
};
|
};
|
||||||
|
|
||||||
function clearTextarea(textarea) {
|
// Theme storage for recurring viewers
|
||||||
textarea.style.removeProperty("height");
|
const storeTheme = function (theme) {
|
||||||
textarea.style.height = `${textarea.scrollHeight + 4}px`;
|
localStorage.setItem("theme", theme);
|
||||||
if (textarea.value.trim() === "" && textarea.value.includes("\n")) {
|
};
|
||||||
textarea.value = "";
|
|
||||||
}
|
// set theme when visitor returns
|
||||||
|
const setTheme = function () {
|
||||||
|
const activeTheme = localStorage.getItem("theme");
|
||||||
|
colorThemes.forEach((themeOption) => {
|
||||||
|
if (themeOption.id === activeTheme) {
|
||||||
|
themeOption.checked = true;
|
||||||
|
}
|
||||||
|
});
|
||||||
|
// fallback for no :has() support
|
||||||
|
document.documentElement.className = activeTheme;
|
||||||
|
};
|
||||||
|
|
||||||
|
colorThemes.forEach((themeOption) => {
|
||||||
|
themeOption.addEventListener("click", () => {
|
||||||
|
storeTheme(themeOption.id);
|
||||||
|
// fallback for no :has() support
|
||||||
|
document.documentElement.className = themeOption.id;
|
||||||
|
});
|
||||||
|
});
|
||||||
|
|
||||||
|
function deleteMessage(token) {
|
||||||
|
const messageDivUser = document.getElementById(`user_${token}`)
|
||||||
|
const messageDivGpt = document.getElementById(`gpt_${token}`)
|
||||||
|
if (messageDivUser) messageDivUser.parentNode.remove();
|
||||||
|
if (messageDivGpt) messageDivGpt.parentNode.remove();
|
||||||
|
const conversation = JSON.parse(localStorage.getItem(`conversation:${window.conversation_id}`));
|
||||||
|
conversation.items = conversation.items.filter(item => item.token !== token);
|
||||||
|
localStorage.setItem(`conversation:${window.conversation_id}`, JSON.stringify(conversation));
|
||||||
|
|
||||||
|
const messages = document.getElementsByClassName("message");
|
||||||
|
if (messages.length === 0) {
|
||||||
|
delete_conversation(window.conversation_id);
|
||||||
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
function createElement(tag, { classNames, id, innerHTML, textContent } = {}) {
|
document.onload = setTheme();
|
||||||
const el = document.createElement(tag);
|
|
||||||
if (classNames) {
|
|
||||||
el.classList.add(...classNames);
|
|
||||||
}
|
|
||||||
if (id) {
|
|
||||||
el.id = id;
|
|
||||||
}
|
|
||||||
if (innerHTML) {
|
|
||||||
el.innerHTML = innerHTML;
|
|
||||||
}
|
|
||||||
if (textContent) {
|
|
||||||
const preElement = document.createElement("pre");
|
|
||||||
preElement.textContent = textContent;
|
|
||||||
el.appendChild(preElement);
|
|
||||||
}
|
|
||||||
return el;
|
|
||||||
}
|
|
||||||
|
@ -1,34 +0,0 @@
|
|||||||
const sidebar = document.querySelector(".sidebar");
|
|
||||||
const menuButton = document.querySelector(".menu-button");
|
|
||||||
|
|
||||||
function toggleSidebar(event) {
|
|
||||||
if (sidebar.classList.contains("shown")) {
|
|
||||||
hideSidebar(event.target);
|
|
||||||
} else {
|
|
||||||
showSidebar(event.target);
|
|
||||||
}
|
|
||||||
window.scrollTo(0, 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
function showSidebar(target) {
|
|
||||||
sidebar.classList.add("shown");
|
|
||||||
target.classList.add("rotated");
|
|
||||||
document.body.style.overflow = "hidden";
|
|
||||||
}
|
|
||||||
|
|
||||||
function hideSidebar(target) {
|
|
||||||
sidebar.classList.remove("shown");
|
|
||||||
target.classList.remove("rotated");
|
|
||||||
document.body.style.overflow = "auto";
|
|
||||||
}
|
|
||||||
|
|
||||||
menuButton.addEventListener("click", toggleSidebar);
|
|
||||||
|
|
||||||
document.body.addEventListener('click', function(event) {
|
|
||||||
if (event.target.matches('.conversation-title')) {
|
|
||||||
const menuButtonStyle = window.getComputedStyle(menuButton);
|
|
||||||
if (menuButtonStyle.display !== 'none') {
|
|
||||||
hideSidebar(menuButton);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
});
|
|
@ -1,22 +0,0 @@
|
|||||||
var switch_theme_toggler = document.getElementById("theme-toggler");
|
|
||||||
|
|
||||||
switch_theme_toggler.addEventListener("change", toggleTheme);
|
|
||||||
|
|
||||||
function setTheme(themeName) {
|
|
||||||
localStorage.setItem("theme", themeName);
|
|
||||||
document.documentElement.className = themeName;
|
|
||||||
}
|
|
||||||
|
|
||||||
function toggleTheme() {
|
|
||||||
var currentTheme = localStorage.getItem("theme");
|
|
||||||
var newTheme = currentTheme === "theme-dark" ? "theme-light" : "theme-dark";
|
|
||||||
|
|
||||||
setTheme(newTheme);
|
|
||||||
switch_theme_toggler.checked = newTheme === "theme-dark";
|
|
||||||
}
|
|
||||||
|
|
||||||
(function () {
|
|
||||||
var currentTheme = localStorage.getItem("theme") || "theme-dark";
|
|
||||||
setTheme(currentTheme);
|
|
||||||
switch_theme_toggler.checked = currentTheme === "theme-dark";
|
|
||||||
})();
|
|
@ -1,8 +0,0 @@
|
|||||||
{
|
|
||||||
"site_config": {
|
|
||||||
"host": "0.0.0.0",
|
|
||||||
"port": 1338,
|
|
||||||
"debug": false
|
|
||||||
},
|
|
||||||
"url_prefix": "/gpt"
|
|
||||||
}
|
|
@ -1,38 +0,0 @@
|
|||||||
version: "3.9"
|
|
||||||
|
|
||||||
networks:
|
|
||||||
chat_gpt_network:
|
|
||||||
name: "chat_gpt_network"
|
|
||||||
|
|
||||||
services:
|
|
||||||
|
|
||||||
chat-gpt-caddy:
|
|
||||||
image: caddy:2.7.4
|
|
||||||
container_name: "chat_gpt_caddy"
|
|
||||||
restart: unless-stopped
|
|
||||||
networks:
|
|
||||||
- chat_gpt_network
|
|
||||||
environment:
|
|
||||||
- TZ=Europe/Moscow
|
|
||||||
ports:
|
|
||||||
- "8081:8080"
|
|
||||||
volumes:
|
|
||||||
- ./Caddyfile:/etc/caddy/Caddyfile:ro
|
|
||||||
- /etc/localtime:/etc/localtime:ro
|
|
||||||
|
|
||||||
chat-gpt:
|
|
||||||
image: balsh_chat_gpt:latest #ramonvc/freegpt-webui:latest
|
|
||||||
container_name: "chat_gpt"
|
|
||||||
build:
|
|
||||||
context: .
|
|
||||||
dockerfile: Dockerfile
|
|
||||||
hostname: "chat_gpt"
|
|
||||||
networks:
|
|
||||||
- chat_gpt_network
|
|
||||||
volumes:
|
|
||||||
- ./client:/client
|
|
||||||
depends_on:
|
|
||||||
- chat-gpt-caddy
|
|
||||||
expose:
|
|
||||||
- "1338"
|
|
||||||
restart: unless-stopped
|
|
@ -1,19 +0,0 @@
|
|||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
url = None
|
|
||||||
model = None
|
|
||||||
supports_stream = False
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,41 +0,0 @@
|
|||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://aiservice.vercel.app/api/chat/answer"
|
|
||||||
model = ["gpt-3.5-turbo"]
|
|
||||||
supports_stream = False
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
base = ""
|
|
||||||
for message in messages:
|
|
||||||
base += "%s: %s\n" % (message["role"], message["content"])
|
|
||||||
base += "assistant:"
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"accept": "*/*",
|
|
||||||
"content-type": "text/plain;charset=UTF-8",
|
|
||||||
"sec-fetch-dest": "empty",
|
|
||||||
"sec-fetch-mode": "cors",
|
|
||||||
"sec-fetch-site": "same-origin",
|
|
||||||
"Referer": "https://aiservice.vercel.app/chat",
|
|
||||||
}
|
|
||||||
data = {"input": base}
|
|
||||||
response = requests.post(url, headers=headers, json=data)
|
|
||||||
if response.status_code == 200:
|
|
||||||
_json = response.json()
|
|
||||||
yield _json["data"]
|
|
||||||
else:
|
|
||||||
print(f"Error Occurred::{response.status_code}")
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,46 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://hteyun.com"
|
|
||||||
model = [
|
|
||||||
"gpt-3.5-turbo",
|
|
||||||
"gpt-3.5-turbo-16k",
|
|
||||||
"gpt-3.5-turbo-16k-0613",
|
|
||||||
"gpt-3.5-turbo-0613",
|
|
||||||
]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, temperature: float = 0.7, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
}
|
|
||||||
data = {
|
|
||||||
"model": model,
|
|
||||||
"temperature": 0.7,
|
|
||||||
"presence_penalty": 0,
|
|
||||||
"messages": messages,
|
|
||||||
}
|
|
||||||
response = requests.post(url + "/api/chat-stream", json=data, stream=True)
|
|
||||||
|
|
||||||
if stream:
|
|
||||||
for chunk in response.iter_content(chunk_size=None):
|
|
||||||
chunk = chunk.decode("utf-8")
|
|
||||||
if chunk.strip():
|
|
||||||
message = json.loads(chunk)["choices"][0]["message"]["content"]
|
|
||||||
yield message
|
|
||||||
else:
|
|
||||||
message = response.json()["choices"][0]["message"]["content"]
|
|
||||||
yield message
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,96 +0,0 @@
|
|||||||
import hashlib
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
import time
|
|
||||||
import uuid
|
|
||||||
from datetime import datetime
|
|
||||||
from typing import Dict, get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
from g4f.typing import sha256
|
|
||||||
|
|
||||||
url: str = "https://ai.ls"
|
|
||||||
model: str = "gpt-3.5-turbo"
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
working = True
|
|
||||||
|
|
||||||
|
|
||||||
class Utils:
|
|
||||||
def hash(json_data: Dict[str, str]) -> sha256:
|
|
||||||
base_string: str = "%s:%s:%s:%s" % (
|
|
||||||
json_data["t"],
|
|
||||||
json_data["m"],
|
|
||||||
"WI,2rU#_r:r~aF4aJ36[.Z(/8Rv93Rf",
|
|
||||||
len(json_data["m"]),
|
|
||||||
)
|
|
||||||
|
|
||||||
return hashlib.sha256(base_string.encode()).hexdigest()
|
|
||||||
|
|
||||||
def format_timestamp(timestamp: int) -> str:
|
|
||||||
e = timestamp
|
|
||||||
n = e % 10
|
|
||||||
r = n + 1 if n % 2 == 0 else n
|
|
||||||
return str(e - n + r)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, temperature: float = 0.6, stream: bool = False, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"authority": "api.caipacity.com",
|
|
||||||
"accept": "*/*",
|
|
||||||
"accept-language": "en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3",
|
|
||||||
"authorization": "Bearer free",
|
|
||||||
"client-id": str(uuid.uuid4()),
|
|
||||||
"client-v": "0.1.249",
|
|
||||||
"content-type": "application/json",
|
|
||||||
"origin": "https://ai.ls",
|
|
||||||
"referer": "https://ai.ls/",
|
|
||||||
"sec-ch-ua": '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
|
|
||||||
"sec-ch-ua-mobile": "?0",
|
|
||||||
"sec-ch-ua-platform": '"Windows"',
|
|
||||||
"sec-fetch-dest": "empty",
|
|
||||||
"sec-fetch-mode": "cors",
|
|
||||||
"sec-fetch-site": "cross-site",
|
|
||||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36",
|
|
||||||
}
|
|
||||||
|
|
||||||
timestamp = Utils.format_timestamp(int(time.time() * 1000))
|
|
||||||
|
|
||||||
sig = {
|
|
||||||
"d": datetime.now().strftime("%Y-%m-%d"),
|
|
||||||
"t": timestamp,
|
|
||||||
"s": Utils.hash({"t": timestamp, "m": messages[-1]["content"]}),
|
|
||||||
}
|
|
||||||
|
|
||||||
json_data = json.dumps(
|
|
||||||
separators=(",", ":"),
|
|
||||||
obj={
|
|
||||||
"model": "gpt-3.5-turbo",
|
|
||||||
"temperature": 0.6,
|
|
||||||
"stream": True,
|
|
||||||
"messages": messages,
|
|
||||||
}
|
|
||||||
| sig,
|
|
||||||
)
|
|
||||||
|
|
||||||
response = requests.post(
|
|
||||||
"https://api.caipacity.com/v1/chat/completions",
|
|
||||||
headers=headers,
|
|
||||||
data=json_data,
|
|
||||||
stream=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
for token in response.iter_lines():
|
|
||||||
if b"content" in token:
|
|
||||||
completion_chunk = json.loads(token.decode().replace("data: ", ""))
|
|
||||||
token = completion_chunk["choices"][0]["delta"].get("content")
|
|
||||||
if token != None:
|
|
||||||
yield token
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,87 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
import random
|
|
||||||
import re
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import browser_cookie3
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://bard.google.com"
|
|
||||||
model = ["Palm2"]
|
|
||||||
supports_stream = False
|
|
||||||
needs_auth = True
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
psid = {cookie.name: cookie.value for cookie in browser_cookie3.chrome(domain_name=".google.com")}["__Secure-1PSID"]
|
|
||||||
|
|
||||||
formatted = "\n".join(["%s: %s" % (message["role"], message["content"]) for message in messages])
|
|
||||||
prompt = f"{formatted}\nAssistant:"
|
|
||||||
|
|
||||||
proxy = kwargs.get("proxy", False)
|
|
||||||
if proxy == False:
|
|
||||||
print("warning!, you did not give a proxy, a lot of countries are banned from Google Bard, so it may not work")
|
|
||||||
|
|
||||||
snlm0e = None
|
|
||||||
conversation_id = None
|
|
||||||
response_id = None
|
|
||||||
choice_id = None
|
|
||||||
|
|
||||||
client = requests.Session()
|
|
||||||
client.proxies = {"http": f"http://{proxy}", "https": f"http://{proxy}"} if proxy else None
|
|
||||||
|
|
||||||
client.headers = {
|
|
||||||
"authority": "bard.google.com",
|
|
||||||
"content-type": "application/x-www-form-urlencoded;charset=UTF-8",
|
|
||||||
"origin": "https://bard.google.com",
|
|
||||||
"referer": "https://bard.google.com/",
|
|
||||||
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36",
|
|
||||||
"x-same-domain": "1",
|
|
||||||
"cookie": f"__Secure-1PSID={psid}",
|
|
||||||
}
|
|
||||||
|
|
||||||
snlm0e = (
|
|
||||||
re.search(r"SNlM0e\":\"(.*?)\"", client.get("https://bard.google.com/").text).group(1) if not snlm0e else snlm0e
|
|
||||||
)
|
|
||||||
|
|
||||||
params = {
|
|
||||||
"bl": "boq_assistant-bard-web-server_20230326.21_p0",
|
|
||||||
"_reqid": random.randint(1111, 9999),
|
|
||||||
"rt": "c",
|
|
||||||
}
|
|
||||||
|
|
||||||
data = {
|
|
||||||
"at": snlm0e,
|
|
||||||
"f.req": json.dumps(
|
|
||||||
[
|
|
||||||
None,
|
|
||||||
json.dumps([[prompt], None, [conversation_id, response_id, choice_id]]),
|
|
||||||
]
|
|
||||||
),
|
|
||||||
}
|
|
||||||
|
|
||||||
intents = ".".join(["assistant", "lamda", "BardFrontendService"])
|
|
||||||
|
|
||||||
response = client.post(
|
|
||||||
f"https://bard.google.com/_/BardChatUi/data/{intents}/StreamGenerate",
|
|
||||||
data=data,
|
|
||||||
params=params,
|
|
||||||
)
|
|
||||||
|
|
||||||
chat_data = json.loads(response.content.splitlines()[3])[0][2]
|
|
||||||
if chat_data:
|
|
||||||
json_chat_data = json.loads(chat_data)
|
|
||||||
|
|
||||||
yield json_chat_data[0][0]
|
|
||||||
|
|
||||||
else:
|
|
||||||
yield "error"
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,64 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://openai-proxy-api.vercel.app/v1/"
|
|
||||||
model = [
|
|
||||||
"gpt-3.5-turbo",
|
|
||||||
"gpt-3.5-turbo-0613",
|
|
||||||
"gpt-3.5-turbo-16k",
|
|
||||||
"gpt-3.5-turbo-16k-0613",
|
|
||||||
"gpt-4",
|
|
||||||
]
|
|
||||||
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36 Edg/114.0.1823.58",
|
|
||||||
"Referer": "https://chat.ylokh.xyz/",
|
|
||||||
"Origin": "https://chat.ylokh.xyz",
|
|
||||||
"Connection": "keep-alive",
|
|
||||||
}
|
|
||||||
|
|
||||||
json_data = {
|
|
||||||
"messages": messages,
|
|
||||||
"temperature": 1.0,
|
|
||||||
"model": model,
|
|
||||||
"stream": stream,
|
|
||||||
}
|
|
||||||
|
|
||||||
response = requests.post(
|
|
||||||
"https://openai-proxy-api.vercel.app/v1/chat/completions",
|
|
||||||
headers=headers,
|
|
||||||
json=json_data,
|
|
||||||
stream=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
for token in response.iter_lines():
|
|
||||||
decoded = token.decode("utf-8")
|
|
||||||
if decoded.startswith("data: "):
|
|
||||||
data_str = decoded.replace("data: ", "")
|
|
||||||
data = json.loads(data_str)
|
|
||||||
if "choices" in data and "delta" in data["choices"][0]:
|
|
||||||
delta = data["choices"][0]["delta"]
|
|
||||||
content = delta.get("content", "")
|
|
||||||
finish_reason = delta.get("finish_reason", "")
|
|
||||||
|
|
||||||
if finish_reason == "stop":
|
|
||||||
break
|
|
||||||
if content:
|
|
||||||
yield content
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,355 +0,0 @@
|
|||||||
import asyncio
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
import random
|
|
||||||
import ssl
|
|
||||||
import uuid
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import aiohttp
|
|
||||||
import certifi
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://bing.com/chat"
|
|
||||||
model = ["gpt-4"]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
ssl_context = ssl.create_default_context()
|
|
||||||
ssl_context.load_verify_locations(certifi.where())
|
|
||||||
|
|
||||||
|
|
||||||
class optionsSets:
|
|
||||||
optionSet: dict = {"tone": str, "optionsSets": list}
|
|
||||||
|
|
||||||
jailbreak: dict = {
|
|
||||||
"optionsSets": [
|
|
||||||
"saharasugg",
|
|
||||||
"enablenewsfc",
|
|
||||||
"clgalileo",
|
|
||||||
"gencontentv3",
|
|
||||||
"nlu_direct_response_filter",
|
|
||||||
"deepleo",
|
|
||||||
"disable_emoji_spoken_text",
|
|
||||||
"responsible_ai_policy_235",
|
|
||||||
"enablemm",
|
|
||||||
"h3precise"
|
|
||||||
# "harmonyv3",
|
|
||||||
"dtappid",
|
|
||||||
"cricinfo",
|
|
||||||
"cricinfov2",
|
|
||||||
"dv3sugg",
|
|
||||||
"nojbfedge",
|
|
||||||
]
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
class Defaults:
|
|
||||||
delimiter = "\x1e"
|
|
||||||
ip_address = f"13.{random.randint(104, 107)}.{random.randint(0, 255)}.{random.randint(0, 255)}"
|
|
||||||
|
|
||||||
allowedMessageTypes = [
|
|
||||||
"Chat",
|
|
||||||
"Disengaged",
|
|
||||||
"AdsQuery",
|
|
||||||
"SemanticSerp",
|
|
||||||
"GenerateContentQuery",
|
|
||||||
"SearchQuery",
|
|
||||||
"ActionRequest",
|
|
||||||
"Context",
|
|
||||||
"Progress",
|
|
||||||
"AdsQuery",
|
|
||||||
"SemanticSerp",
|
|
||||||
]
|
|
||||||
|
|
||||||
sliceIds = [
|
|
||||||
# "222dtappid",
|
|
||||||
# "225cricinfo",
|
|
||||||
# "224locals0"
|
|
||||||
"winmuid3tf",
|
|
||||||
"osbsdusgreccf",
|
|
||||||
"ttstmout",
|
|
||||||
"crchatrev",
|
|
||||||
"winlongmsgtf",
|
|
||||||
"ctrlworkpay",
|
|
||||||
"norespwtf",
|
|
||||||
"tempcacheread",
|
|
||||||
"temptacache",
|
|
||||||
"505scss0",
|
|
||||||
"508jbcars0",
|
|
||||||
"515enbotdets0",
|
|
||||||
"5082tsports",
|
|
||||||
"515vaoprvs",
|
|
||||||
"424dagslnv1s0",
|
|
||||||
"kcimgattcf",
|
|
||||||
"427startpms0",
|
|
||||||
]
|
|
||||||
|
|
||||||
location = {
|
|
||||||
"locale": "en-US",
|
|
||||||
"market": "en-US",
|
|
||||||
"region": "US",
|
|
||||||
"locationHints": [
|
|
||||||
{
|
|
||||||
"country": "United States",
|
|
||||||
"state": "California",
|
|
||||||
"city": "Los Angeles",
|
|
||||||
"timezoneoffset": 8,
|
|
||||||
"countryConfidence": 8,
|
|
||||||
"Center": {"Latitude": 34.0536909, "Longitude": -118.242766},
|
|
||||||
"RegionType": 2,
|
|
||||||
"SourceType": 1,
|
|
||||||
}
|
|
||||||
],
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def _format(msg: dict) -> str:
|
|
||||||
return json.dumps(msg, ensure_ascii=False) + Defaults.delimiter
|
|
||||||
|
|
||||||
|
|
||||||
async def create_conversation():
|
|
||||||
for _ in range(5):
|
|
||||||
create = requests.get(
|
|
||||||
"https://www.bing.com/turing/conversation/create",
|
|
||||||
headers={
|
|
||||||
"authority": "edgeservices.bing.com",
|
|
||||||
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
|
|
||||||
"accept-language": "en-US,en;q=0.9",
|
|
||||||
"cache-control": "max-age=0",
|
|
||||||
"sec-ch-ua": '"Chromium";v="110", "Not A(Brand";v="24", "Microsoft Edge";v="110"',
|
|
||||||
"sec-ch-ua-arch": '"x86"',
|
|
||||||
"sec-ch-ua-bitness": '"64"',
|
|
||||||
"sec-ch-ua-full-version": '"110.0.1587.69"',
|
|
||||||
"sec-ch-ua-full-version-list": '"Chromium";v="110.0.5481.192", "Not A(Brand";v="24.0.0.0", "Microsoft Edge";v="110.0.1587.69"',
|
|
||||||
"sec-ch-ua-mobile": "?0",
|
|
||||||
"sec-ch-ua-model": '""',
|
|
||||||
"sec-ch-ua-platform": '"Windows"',
|
|
||||||
"sec-ch-ua-platform-version": '"15.0.0"',
|
|
||||||
"sec-fetch-dest": "document",
|
|
||||||
"sec-fetch-mode": "navigate",
|
|
||||||
"sec-fetch-site": "none",
|
|
||||||
"sec-fetch-user": "?1",
|
|
||||||
"upgrade-insecure-requests": "1",
|
|
||||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36 Edg/110.0.1587.69",
|
|
||||||
"x-edge-shopping-flag": "1",
|
|
||||||
"x-forwarded-for": Defaults.ip_address,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
|
|
||||||
conversationId = create.json().get("conversationId")
|
|
||||||
clientId = create.json().get("clientId")
|
|
||||||
conversationSignature = create.json().get("conversationSignature")
|
|
||||||
|
|
||||||
if not conversationId or not clientId or not conversationSignature and _ == 4:
|
|
||||||
raise Exception("Failed to create conversation.")
|
|
||||||
|
|
||||||
return conversationId, clientId, conversationSignature
|
|
||||||
|
|
||||||
|
|
||||||
async def stream_generate(
|
|
||||||
prompt: str,
|
|
||||||
mode: optionsSets.optionSet = optionsSets.jailbreak,
|
|
||||||
context: bool or str = False,
|
|
||||||
):
|
|
||||||
timeout = aiohttp.ClientTimeout(total=900)
|
|
||||||
session = aiohttp.ClientSession(timeout=timeout)
|
|
||||||
|
|
||||||
conversationId, clientId, conversationSignature = await create_conversation()
|
|
||||||
|
|
||||||
wss = await session.ws_connect(
|
|
||||||
"wss://sydney.bing.com/sydney/ChatHub",
|
|
||||||
ssl=ssl_context,
|
|
||||||
autoping=False,
|
|
||||||
headers={
|
|
||||||
"accept": "application/json",
|
|
||||||
"accept-language": "en-US,en;q=0.9",
|
|
||||||
"content-type": "application/json",
|
|
||||||
"sec-ch-ua": '"Not_A Brand";v="99", "Microsoft Edge";v="110", "Chromium";v="110"',
|
|
||||||
"sec-ch-ua-arch": '"x86"',
|
|
||||||
"sec-ch-ua-bitness": '"64"',
|
|
||||||
"sec-ch-ua-full-version": '"109.0.1518.78"',
|
|
||||||
"sec-ch-ua-full-version-list": '"Chromium";v="110.0.5481.192", "Not A(Brand";v="24.0.0.0", "Microsoft Edge";v="110.0.1587.69"',
|
|
||||||
"sec-ch-ua-mobile": "?0",
|
|
||||||
"sec-ch-ua-model": "",
|
|
||||||
"sec-ch-ua-platform": '"Windows"',
|
|
||||||
"sec-ch-ua-platform-version": '"15.0.0"',
|
|
||||||
"sec-fetch-dest": "empty",
|
|
||||||
"sec-fetch-mode": "cors",
|
|
||||||
"sec-fetch-site": "same-origin",
|
|
||||||
"x-ms-client-request-id": str(uuid.uuid4()),
|
|
||||||
"x-ms-useragent": "azsdk-js-api-client-factory/1.0.0-beta.1 core-rest-pipeline/1.10.0 OS/Win32",
|
|
||||||
"Referer": "https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx",
|
|
||||||
"Referrer-Policy": "origin-when-cross-origin",
|
|
||||||
"x-forwarded-for": Defaults.ip_address,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
|
|
||||||
await wss.send_str(_format({"protocol": "json", "version": 1}))
|
|
||||||
await wss.receive(timeout=900)
|
|
||||||
|
|
||||||
struct = {
|
|
||||||
"arguments": [
|
|
||||||
{
|
|
||||||
**mode,
|
|
||||||
"source": "cib",
|
|
||||||
"allowedMessageTypes": Defaults.allowedMessageTypes,
|
|
||||||
"sliceIds": Defaults.sliceIds,
|
|
||||||
"traceId": os.urandom(16).hex(),
|
|
||||||
"isStartOfSession": True,
|
|
||||||
"message": Defaults.location
|
|
||||||
| {
|
|
||||||
"author": "user",
|
|
||||||
"inputMethod": "Keyboard",
|
|
||||||
"text": prompt,
|
|
||||||
"messageType": "Chat",
|
|
||||||
},
|
|
||||||
"conversationSignature": conversationSignature,
|
|
||||||
"participant": {"id": clientId},
|
|
||||||
"conversationId": conversationId,
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"invocationId": "0",
|
|
||||||
"target": "chat",
|
|
||||||
"type": 4,
|
|
||||||
}
|
|
||||||
|
|
||||||
if context:
|
|
||||||
struct["arguments"][0]["previousMessages"] = [
|
|
||||||
{
|
|
||||||
"author": "user",
|
|
||||||
"description": context,
|
|
||||||
"contextType": "WebPage",
|
|
||||||
"messageType": "Context",
|
|
||||||
"messageId": "discover-web--page-ping-mriduna-----",
|
|
||||||
}
|
|
||||||
]
|
|
||||||
|
|
||||||
await wss.send_str(_format(struct))
|
|
||||||
|
|
||||||
final = False
|
|
||||||
draw = False
|
|
||||||
resp_txt = ""
|
|
||||||
result_text = ""
|
|
||||||
resp_txt_no_link = ""
|
|
||||||
cache_text = ""
|
|
||||||
|
|
||||||
while not final:
|
|
||||||
msg = await wss.receive(timeout=900)
|
|
||||||
objects = msg.data.split(Defaults.delimiter)
|
|
||||||
|
|
||||||
for obj in objects:
|
|
||||||
if obj is None or not obj:
|
|
||||||
continue
|
|
||||||
|
|
||||||
response = json.loads(obj)
|
|
||||||
if response.get("type") == 1 and response["arguments"][0].get(
|
|
||||||
"messages",
|
|
||||||
):
|
|
||||||
if not draw:
|
|
||||||
if (response["arguments"][0]["messages"][0]["contentOrigin"] != "Apology") and not draw:
|
|
||||||
resp_txt = result_text + response["arguments"][0]["messages"][0]["adaptiveCards"][0]["body"][
|
|
||||||
0
|
|
||||||
].get("text", "")
|
|
||||||
resp_txt_no_link = result_text + response["arguments"][0]["messages"][0].get("text", "")
|
|
||||||
|
|
||||||
if response["arguments"][0]["messages"][0].get(
|
|
||||||
"messageType",
|
|
||||||
):
|
|
||||||
resp_txt = (
|
|
||||||
resp_txt
|
|
||||||
+ response["arguments"][0]["messages"][0]["adaptiveCards"][0]["body"][0]["inlines"][
|
|
||||||
0
|
|
||||||
].get("text")
|
|
||||||
+ "\n"
|
|
||||||
)
|
|
||||||
result_text = (
|
|
||||||
result_text
|
|
||||||
+ response["arguments"][0]["messages"][0]["adaptiveCards"][0]["body"][0]["inlines"][
|
|
||||||
0
|
|
||||||
].get("text")
|
|
||||||
+ "\n"
|
|
||||||
)
|
|
||||||
|
|
||||||
if cache_text.endswith(" "):
|
|
||||||
final = True
|
|
||||||
if wss and not wss.closed:
|
|
||||||
await wss.close()
|
|
||||||
if session and not session.closed:
|
|
||||||
await session.close()
|
|
||||||
|
|
||||||
yield (resp_txt.replace(cache_text, ""))
|
|
||||||
cache_text = resp_txt
|
|
||||||
|
|
||||||
elif response.get("type") == 2:
|
|
||||||
if response["item"]["result"].get("error"):
|
|
||||||
if wss and not wss.closed:
|
|
||||||
await wss.close()
|
|
||||||
if session and not session.closed:
|
|
||||||
await session.close()
|
|
||||||
|
|
||||||
raise Exception(f"{response['item']['result']['value']}: {response['item']['result']['message']}")
|
|
||||||
|
|
||||||
if draw:
|
|
||||||
cache = response["item"]["messages"][1]["adaptiveCards"][0]["body"][0]["text"]
|
|
||||||
response["item"]["messages"][1]["adaptiveCards"][0]["body"][0]["text"] = cache + resp_txt
|
|
||||||
|
|
||||||
if response["item"]["messages"][-1]["contentOrigin"] == "Apology" and resp_txt:
|
|
||||||
response["item"]["messages"][-1]["text"] = resp_txt_no_link
|
|
||||||
response["item"]["messages"][-1]["adaptiveCards"][0]["body"][0]["text"] = resp_txt
|
|
||||||
|
|
||||||
# print('Preserved the message from being deleted', file=sys.stderr)
|
|
||||||
|
|
||||||
final = True
|
|
||||||
if wss and not wss.closed:
|
|
||||||
await wss.close()
|
|
||||||
if session and not session.closed:
|
|
||||||
await session.close()
|
|
||||||
|
|
||||||
|
|
||||||
def run(generator):
|
|
||||||
loop = asyncio.new_event_loop()
|
|
||||||
asyncio.set_event_loop(loop)
|
|
||||||
gen = generator.__aiter__()
|
|
||||||
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
next_val = loop.run_until_complete(gen.__anext__())
|
|
||||||
yield next_val
|
|
||||||
|
|
||||||
except StopAsyncIteration:
|
|
||||||
break
|
|
||||||
# print('Done')
|
|
||||||
|
|
||||||
|
|
||||||
def convert(messages):
|
|
||||||
context = ""
|
|
||||||
|
|
||||||
for message in messages:
|
|
||||||
context += "[%s](#message)\n%s\n\n" % (message["role"], message["content"])
|
|
||||||
|
|
||||||
return context
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
if len(messages) < 2:
|
|
||||||
prompt = messages[0]["content"]
|
|
||||||
context = False
|
|
||||||
|
|
||||||
else:
|
|
||||||
prompt = messages[-1]["content"]
|
|
||||||
context = convert(messages[:-1])
|
|
||||||
|
|
||||||
response = run(stream_generate(prompt, optionsSets.jailbreak, context))
|
|
||||||
for token in response:
|
|
||||||
yield (token)
|
|
||||||
|
|
||||||
# print('Done')
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,58 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://v.chatfree.cc"
|
|
||||||
model = ["gpt-3.5-turbo", "gpt-3.5-turbo-16k"]
|
|
||||||
supports_stream = False
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"authority": "chat.dfehub.com",
|
|
||||||
"accept": "*/*",
|
|
||||||
"accept-language": "en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3",
|
|
||||||
"content-type": "application/json",
|
|
||||||
"origin": "https://v.chatfree.cc",
|
|
||||||
"referer": "https://v.chatfree.cc/",
|
|
||||||
"sec-ch-ua": '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
|
|
||||||
"sec-ch-ua-mobile": "?0",
|
|
||||||
"sec-ch-ua-platform": '"macOS"',
|
|
||||||
"sec-fetch-dest": "empty",
|
|
||||||
"sec-fetch-mode": "cors",
|
|
||||||
"sec-fetch-site": "same-origin",
|
|
||||||
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36",
|
|
||||||
"x-requested-with": "XMLHttpRequest",
|
|
||||||
}
|
|
||||||
|
|
||||||
json_data = {
|
|
||||||
"messages": messages,
|
|
||||||
"stream": True,
|
|
||||||
"model": model,
|
|
||||||
"temperature": 0.5,
|
|
||||||
"presence_penalty": 0,
|
|
||||||
"frequency_penalty": 0,
|
|
||||||
"top_p": 1,
|
|
||||||
}
|
|
||||||
|
|
||||||
response = requests.post(
|
|
||||||
"https://v.chatfree.cc/api/openai/v1/chat/completions",
|
|
||||||
headers=headers,
|
|
||||||
json=json_data,
|
|
||||||
)
|
|
||||||
|
|
||||||
for chunk in response.iter_lines():
|
|
||||||
if b"content" in chunk:
|
|
||||||
data = json.loads(chunk.decode().split("data: ")[1])
|
|
||||||
yield (data["choices"][0]["delta"]["content"])
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,60 +0,0 @@
|
|||||||
import os
|
|
||||||
import re
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://chatgpt.ai/gpt-4/"
|
|
||||||
model = ["gpt-4"]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
chat = ""
|
|
||||||
for message in messages:
|
|
||||||
chat += "%s: %s\n" % (message["role"], message["content"])
|
|
||||||
chat += "assistant: "
|
|
||||||
|
|
||||||
response = requests.get("https://chatgpt.ai/")
|
|
||||||
nonce, post_id, _, bot_id = re.findall(
|
|
||||||
r'data-nonce="(.*)"\n data-post-id="(.*)"\n data-url="(.*)"\n data-bot-id="(.*)"\n data-width',
|
|
||||||
response.text,
|
|
||||||
)[0]
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"authority": "chatgpt.ai",
|
|
||||||
"accept": "*/*",
|
|
||||||
"accept-language": "en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3",
|
|
||||||
"cache-control": "no-cache",
|
|
||||||
"origin": "https://chatgpt.ai",
|
|
||||||
"pragma": "no-cache",
|
|
||||||
"referer": "https://chatgpt.ai/gpt-4/",
|
|
||||||
"sec-ch-ua": '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
|
|
||||||
"sec-ch-ua-mobile": "?0",
|
|
||||||
"sec-ch-ua-platform": '"Windows"',
|
|
||||||
"sec-fetch-dest": "empty",
|
|
||||||
"sec-fetch-mode": "cors",
|
|
||||||
"sec-fetch-site": "same-origin",
|
|
||||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36",
|
|
||||||
}
|
|
||||||
data = {
|
|
||||||
"_wpnonce": nonce,
|
|
||||||
"post_id": post_id,
|
|
||||||
"url": "https://chatgpt.ai/gpt-4",
|
|
||||||
"action": "wpaicg_chat_shortcode_message",
|
|
||||||
"message": chat,
|
|
||||||
"bot_id": bot_id,
|
|
||||||
}
|
|
||||||
|
|
||||||
response = requests.post("https://chatgpt.ai/wp-admin/admin-ajax.php", headers=headers, data=data)
|
|
||||||
|
|
||||||
yield (response.json()["data"])
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,113 +0,0 @@
|
|||||||
import base64
|
|
||||||
import os
|
|
||||||
import re
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://chatgptlogin.ac"
|
|
||||||
model = ["gpt-3.5-turbo"]
|
|
||||||
supports_stream = False
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
def get_nonce():
|
|
||||||
res = requests.get(
|
|
||||||
"https://chatgptlogin.ac/use-chatgpt-free/",
|
|
||||||
headers={
|
|
||||||
"Referer": "https://chatgptlogin.ac/use-chatgpt-free/",
|
|
||||||
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36",
|
|
||||||
},
|
|
||||||
)
|
|
||||||
|
|
||||||
src = re.search(
|
|
||||||
r'class="mwai-chat mwai-chatgpt">.*<span>Send</span></button></div></div></div> <script defer src="(.*?)">',
|
|
||||||
res.text,
|
|
||||||
).group(1)
|
|
||||||
decoded_string = base64.b64decode(src.split(",")[-1]).decode("utf-8")
|
|
||||||
return re.search(r"let restNonce = '(.*?)';", decoded_string).group(1)
|
|
||||||
|
|
||||||
def transform(messages: list) -> list:
|
|
||||||
def html_encode(string: str) -> str:
|
|
||||||
table = {
|
|
||||||
'"': """,
|
|
||||||
"'": "'",
|
|
||||||
"&": "&",
|
|
||||||
">": ">",
|
|
||||||
"<": "<",
|
|
||||||
"\n": "<br>",
|
|
||||||
"\t": " ",
|
|
||||||
" ": " ",
|
|
||||||
}
|
|
||||||
|
|
||||||
for key in table:
|
|
||||||
string = string.replace(key, table[key])
|
|
||||||
|
|
||||||
return string
|
|
||||||
|
|
||||||
return [
|
|
||||||
{
|
|
||||||
"id": os.urandom(6).hex(),
|
|
||||||
"role": message["role"],
|
|
||||||
"content": message["content"],
|
|
||||||
"who": "AI: " if message["role"] == "assistant" else "User: ",
|
|
||||||
"html": html_encode(message["content"]),
|
|
||||||
}
|
|
||||||
for message in messages
|
|
||||||
]
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"authority": "chatgptlogin.ac",
|
|
||||||
"accept": "*/*",
|
|
||||||
"accept-language": "en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3",
|
|
||||||
"content-type": "application/json",
|
|
||||||
"origin": "https://chatgptlogin.ac",
|
|
||||||
"referer": "https://chatgptlogin.ac/use-chatgpt-free/",
|
|
||||||
"sec-ch-ua": '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
|
|
||||||
"sec-ch-ua-mobile": "?0",
|
|
||||||
"sec-ch-ua-platform": '"Windows"',
|
|
||||||
"sec-fetch-dest": "empty",
|
|
||||||
"sec-fetch-mode": "cors",
|
|
||||||
"sec-fetch-site": "same-origin",
|
|
||||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36",
|
|
||||||
"x-wp-nonce": get_nonce(),
|
|
||||||
}
|
|
||||||
|
|
||||||
conversation = transform(messages)
|
|
||||||
|
|
||||||
json_data = {
|
|
||||||
"env": "chatbot",
|
|
||||||
"session": "N/A",
|
|
||||||
"prompt": "Converse as if you were an AI assistant. Be friendly, creative.",
|
|
||||||
"context": "Converse as if you were an AI assistant. Be friendly, creative.",
|
|
||||||
"messages": conversation,
|
|
||||||
"newMessage": messages[-1]["content"],
|
|
||||||
"userName": '<div class="mwai-name-text">User:</div>',
|
|
||||||
"aiName": '<div class="mwai-name-text">AI:</div>',
|
|
||||||
"model": "gpt-3.5-turbo",
|
|
||||||
"temperature": 0.8,
|
|
||||||
"maxTokens": 1024,
|
|
||||||
"maxResults": 1,
|
|
||||||
"apiKey": "",
|
|
||||||
"service": "openai",
|
|
||||||
"embeddingsIndex": "",
|
|
||||||
"stop": "",
|
|
||||||
"clientId": os.urandom(6).hex(),
|
|
||||||
}
|
|
||||||
|
|
||||||
response = requests.post(
|
|
||||||
"https://chatgptlogin.ac/wp-json/ai-chatbot/v1/chat",
|
|
||||||
headers=headers,
|
|
||||||
json=json_data,
|
|
||||||
)
|
|
||||||
|
|
||||||
return response.json()["reply"]
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,48 +0,0 @@
|
|||||||
import hashlib
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
import random
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://deepai.org"
|
|
||||||
model = ["gpt-3.5-turbo"]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
def md5(text: str) -> str:
|
|
||||||
return hashlib.md5(text.encode()).hexdigest()[::-1]
|
|
||||||
|
|
||||||
def get_api_key(user_agent: str) -> str:
|
|
||||||
part1 = str(random.randint(0, 10**11))
|
|
||||||
part2 = md5(user_agent + md5(user_agent + md5(user_agent + part1 + "x")))
|
|
||||||
|
|
||||||
return f"tryit-{part1}-{part2}"
|
|
||||||
|
|
||||||
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
|
|
||||||
|
|
||||||
headers = {"api-key": get_api_key(user_agent), "user-agent": user_agent}
|
|
||||||
|
|
||||||
files = {"chat_style": (None, "chat"), "chatHistory": (None, json.dumps(messages))}
|
|
||||||
|
|
||||||
r = requests.post(
|
|
||||||
"https://api.deepai.org/chat_response",
|
|
||||||
headers=headers,
|
|
||||||
files=files,
|
|
||||||
stream=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
for chunk in r.iter_content(chunk_size=None):
|
|
||||||
r.raise_for_status()
|
|
||||||
yield chunk.decode()
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,66 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://free.easychat.work"
|
|
||||||
model = [
|
|
||||||
"gpt-3.5-turbo",
|
|
||||||
"gpt-3.5-turbo-16k",
|
|
||||||
"gpt-3.5-turbo-16k-0613",
|
|
||||||
"gpt-3.5-turbo-0613",
|
|
||||||
]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"authority": "free.easychat.work",
|
|
||||||
"accept": "text/event-stream",
|
|
||||||
"accept-language": "en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3",
|
|
||||||
"content-type": "application/json",
|
|
||||||
"endpoint": "",
|
|
||||||
"origin": "https://free.easychat.work",
|
|
||||||
"plugins": "0",
|
|
||||||
"referer": "https://free.easychat.work/",
|
|
||||||
"sec-ch-ua": '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
|
|
||||||
"sec-ch-ua-mobile": "?0",
|
|
||||||
"sec-ch-ua-platform": '"macOS"',
|
|
||||||
"sec-fetch-dest": "empty",
|
|
||||||
"sec-fetch-mode": "cors",
|
|
||||||
"sec-fetch-site": "same-origin",
|
|
||||||
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36",
|
|
||||||
"usesearch": "false",
|
|
||||||
"x-requested-with": "XMLHttpRequest",
|
|
||||||
}
|
|
||||||
|
|
||||||
json_data = {
|
|
||||||
"messages": messages,
|
|
||||||
"stream": True,
|
|
||||||
"model": model,
|
|
||||||
"temperature": 0.5,
|
|
||||||
"presence_penalty": 0,
|
|
||||||
"frequency_penalty": 0,
|
|
||||||
"top_p": 1,
|
|
||||||
}
|
|
||||||
|
|
||||||
response = requests.post(
|
|
||||||
"https://free.easychat.work/api/openai/v1/chat/completions",
|
|
||||||
headers=headers,
|
|
||||||
json=json_data,
|
|
||||||
)
|
|
||||||
|
|
||||||
for chunk in response.iter_lines():
|
|
||||||
if b"content" in chunk:
|
|
||||||
data = json.loads(chunk.decode().split("data: ")[1])
|
|
||||||
yield (data["choices"][0]["delta"]["content"])
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,46 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://gpt4.ezchat.top"
|
|
||||||
model = [
|
|
||||||
"gpt-3.5-turbo",
|
|
||||||
"gpt-3.5-turbo-16k",
|
|
||||||
"gpt-3.5-turbo-16k-0613",
|
|
||||||
"gpt-3.5-turbo-0613",
|
|
||||||
]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, temperature: float = 0.7, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
}
|
|
||||||
data = {
|
|
||||||
"model": model,
|
|
||||||
"temperature": 0.7,
|
|
||||||
"presence_penalty": 0,
|
|
||||||
"messages": messages,
|
|
||||||
}
|
|
||||||
response = requests.post(url + "/api/openai/v1/chat/completions", json=data, stream=True)
|
|
||||||
|
|
||||||
if stream:
|
|
||||||
for chunk in response.iter_content(chunk_size=None):
|
|
||||||
chunk = chunk.decode("utf-8")
|
|
||||||
if chunk.strip():
|
|
||||||
message = json.loads(chunk)["choices"][0]["message"]["content"]
|
|
||||||
yield message
|
|
||||||
else:
|
|
||||||
message = response.json()["choices"][0]["message"]["content"]
|
|
||||||
yield message
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,59 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://ai.fakeopen.com/v1/"
|
|
||||||
model = [
|
|
||||||
"gpt-3.5-turbo",
|
|
||||||
"gpt-3.5-turbo-0613",
|
|
||||||
"gpt-3.5-turbo-16k",
|
|
||||||
"gpt-3.5-turbo-16k-0613",
|
|
||||||
]
|
|
||||||
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
"accept": "text/event-stream",
|
|
||||||
"Cache-Control": "no-cache",
|
|
||||||
"Proxy-Connection": "keep-alive",
|
|
||||||
"Authorization": f"Bearer {os.environ.get('FAKE_OPEN_KEY', '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')}",
|
|
||||||
}
|
|
||||||
|
|
||||||
json_data = {
|
|
||||||
"messages": messages,
|
|
||||||
"temperature": 1.0,
|
|
||||||
"model": model,
|
|
||||||
"stream": stream,
|
|
||||||
}
|
|
||||||
|
|
||||||
response = requests.post(
|
|
||||||
"https://ai.fakeopen.com/v1/chat/completions",
|
|
||||||
headers=headers,
|
|
||||||
json=json_data,
|
|
||||||
stream=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
for token in response.iter_lines():
|
|
||||||
decoded = token.decode("utf-8")
|
|
||||||
if decoded == "[DONE]":
|
|
||||||
break
|
|
||||||
if decoded.startswith("data: "):
|
|
||||||
data_str = decoded.replace("data: ", "")
|
|
||||||
if data_str != "[DONE]":
|
|
||||||
data = json.loads(data_str)
|
|
||||||
if "choices" in data and "delta" in data["choices"][0] and "content" in data["choices"][0]["delta"]:
|
|
||||||
yield data["choices"][0]["delta"]["content"]
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,41 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://forefront.com"
|
|
||||||
model = ["gpt-3.5-turbo"]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
json_data = {
|
|
||||||
"text": messages[-1]["content"],
|
|
||||||
"action": "noauth",
|
|
||||||
"id": "",
|
|
||||||
"parentId": "",
|
|
||||||
"workspaceId": "",
|
|
||||||
"messagePersona": "607e41fe-95be-497e-8e97-010a59b2e2c0",
|
|
||||||
"model": "gpt-4",
|
|
||||||
"messages": messages[:-1] if len(messages) > 1 else [],
|
|
||||||
"internetMode": "auto",
|
|
||||||
}
|
|
||||||
response = requests.post(
|
|
||||||
"https://streaming.tenant-forefront-default.knative.chi.coreweave.com/free-chat",
|
|
||||||
json=json_data,
|
|
||||||
stream=True,
|
|
||||||
)
|
|
||||||
for token in response.iter_lines():
|
|
||||||
if b"delta" in token:
|
|
||||||
token = json.loads(token.decode().split("data: ")[1])["delta"]
|
|
||||||
yield (token)
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,68 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
import uuid
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
from Crypto.Cipher import AES
|
|
||||||
|
|
||||||
url = "https://chat.getgpt.world/"
|
|
||||||
model = ["gpt-3.5-turbo"]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
def encrypt(e):
|
|
||||||
t = os.urandom(8).hex().encode("utf-8")
|
|
||||||
n = os.urandom(8).hex().encode("utf-8")
|
|
||||||
r = e.encode("utf-8")
|
|
||||||
cipher = AES.new(t, AES.MODE_CBC, n)
|
|
||||||
ciphertext = cipher.encrypt(pad_data(r))
|
|
||||||
return ciphertext.hex() + t.decode("utf-8") + n.decode("utf-8")
|
|
||||||
|
|
||||||
def pad_data(data: bytes) -> bytes:
|
|
||||||
block_size = AES.block_size
|
|
||||||
padding_size = block_size - len(data) % block_size
|
|
||||||
padding = bytes([padding_size] * padding_size)
|
|
||||||
return data + padding
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
"Referer": "https://chat.getgpt.world/",
|
|
||||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36",
|
|
||||||
}
|
|
||||||
|
|
||||||
data = json.dumps(
|
|
||||||
{
|
|
||||||
"messages": messages,
|
|
||||||
"frequency_penalty": kwargs.get("frequency_penalty", 0),
|
|
||||||
"max_tokens": kwargs.get("max_tokens", 4000),
|
|
||||||
"model": "gpt-3.5-turbo",
|
|
||||||
"presence_penalty": kwargs.get("presence_penalty", 0),
|
|
||||||
"temperature": kwargs.get("temperature", 1),
|
|
||||||
"top_p": kwargs.get("top_p", 1),
|
|
||||||
"stream": True,
|
|
||||||
"uuid": str(uuid.uuid4()),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
res = requests.post(
|
|
||||||
"https://chat.getgpt.world/api/chat/stream",
|
|
||||||
headers=headers,
|
|
||||||
json={"signature": encrypt(data)},
|
|
||||||
stream=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
for line in res.iter_lines():
|
|
||||||
if b"content" in line:
|
|
||||||
line_json = json.loads(line.decode("utf-8").split("data: ")[1])
|
|
||||||
yield (line_json["choices"][0]["delta"]["content"])
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,32 +0,0 @@
|
|||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://gpt4.xunika.uk/"
|
|
||||||
model = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613"]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, temperature: float = 0.7, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
}
|
|
||||||
data = {
|
|
||||||
"model": model,
|
|
||||||
"temperature": 0.7,
|
|
||||||
"presence_penalty": 0,
|
|
||||||
"messages": messages,
|
|
||||||
}
|
|
||||||
response = requests.post(url + "/api/openai/v1/chat/completions", json=data, stream=True)
|
|
||||||
|
|
||||||
yield response.json()["choices"][0]["message"]["content"]
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,114 +0,0 @@
|
|||||||
import os
|
|
||||||
from json import loads
|
|
||||||
from typing import get_type_hints
|
|
||||||
from uuid import uuid4
|
|
||||||
|
|
||||||
from requests import Session
|
|
||||||
|
|
||||||
url = "https://gpt-gm.h2o.ai"
|
|
||||||
model = ["falcon-40b", "falcon-7b", "llama-13b"]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
models = {
|
|
||||||
"falcon-7b": "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3",
|
|
||||||
"falcon-40b": "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1",
|
|
||||||
"llama-13b": "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-13b",
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
conversation = "instruction: this is a conversation beween, a user and an AI assistant, respond to the latest message, referring to the conversation if needed\n"
|
|
||||||
for message in messages:
|
|
||||||
conversation += "%s: %s\n" % (message["role"], message["content"])
|
|
||||||
conversation += "assistant:"
|
|
||||||
|
|
||||||
client = Session()
|
|
||||||
client.headers = {
|
|
||||||
"authority": "gpt-gm.h2o.ai",
|
|
||||||
"origin": "https://gpt-gm.h2o.ai",
|
|
||||||
"referer": "https://gpt-gm.h2o.ai/",
|
|
||||||
"sec-ch-ua": '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
|
|
||||||
"sec-ch-ua-mobile": "?0",
|
|
||||||
"sec-ch-ua-platform": '"Windows"',
|
|
||||||
"sec-fetch-dest": "document",
|
|
||||||
"sec-fetch-mode": "navigate",
|
|
||||||
"sec-fetch-site": "same-origin",
|
|
||||||
"sec-fetch-user": "?1",
|
|
||||||
"upgrade-insecure-requests": "1",
|
|
||||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36",
|
|
||||||
}
|
|
||||||
|
|
||||||
client.get("https://gpt-gm.h2o.ai/")
|
|
||||||
response = client.post(
|
|
||||||
"https://gpt-gm.h2o.ai/settings",
|
|
||||||
data={
|
|
||||||
"ethicsModalAccepted": "true",
|
|
||||||
"shareConversationsWithModelAuthors": "true",
|
|
||||||
"ethicsModalAcceptedAt": "",
|
|
||||||
"activeModel": "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1",
|
|
||||||
"searchEnabled": "true",
|
|
||||||
},
|
|
||||||
)
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"authority": "gpt-gm.h2o.ai",
|
|
||||||
"accept": "*/*",
|
|
||||||
"accept-language": "en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3",
|
|
||||||
"origin": "https://gpt-gm.h2o.ai",
|
|
||||||
"referer": "https://gpt-gm.h2o.ai/",
|
|
||||||
"sec-ch-ua": '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
|
|
||||||
"sec-ch-ua-mobile": "?0",
|
|
||||||
"sec-ch-ua-platform": '"Windows"',
|
|
||||||
"sec-fetch-dest": "empty",
|
|
||||||
"sec-fetch-mode": "cors",
|
|
||||||
"sec-fetch-site": "same-origin",
|
|
||||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36",
|
|
||||||
}
|
|
||||||
|
|
||||||
json_data = {"model": models[model]}
|
|
||||||
|
|
||||||
response = client.post("https://gpt-gm.h2o.ai/conversation", headers=headers, json=json_data)
|
|
||||||
conversationId = response.json()["conversationId"]
|
|
||||||
|
|
||||||
completion = client.post(
|
|
||||||
f"https://gpt-gm.h2o.ai/conversation/{conversationId}",
|
|
||||||
stream=True,
|
|
||||||
json={
|
|
||||||
"inputs": conversation,
|
|
||||||
"parameters": {
|
|
||||||
"temperature": kwargs.get("temperature", 0.4),
|
|
||||||
"truncate": kwargs.get("truncate", 2048),
|
|
||||||
"max_new_tokens": kwargs.get("max_new_tokens", 1024),
|
|
||||||
"do_sample": kwargs.get("do_sample", True),
|
|
||||||
"repetition_penalty": kwargs.get("repetition_penalty", 1.2),
|
|
||||||
"return_full_text": kwargs.get("return_full_text", False),
|
|
||||||
},
|
|
||||||
"stream": True,
|
|
||||||
"options": {
|
|
||||||
"id": kwargs.get("id", str(uuid4())),
|
|
||||||
"response_id": kwargs.get("response_id", str(uuid4())),
|
|
||||||
"is_retry": False,
|
|
||||||
"use_cache": False,
|
|
||||||
"web_search_id": "",
|
|
||||||
},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
|
|
||||||
for line in completion.iter_lines():
|
|
||||||
if b"data" in line:
|
|
||||||
line = loads(line.decode("utf-8").replace("data:", ""))
|
|
||||||
token = line["token"]["text"]
|
|
||||||
|
|
||||||
if token == "<|endoftext|>":
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
yield (token)
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,60 +0,0 @@
|
|||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://liaobots.com"
|
|
||||||
model = ["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4"]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = True
|
|
||||||
working = False
|
|
||||||
|
|
||||||
models = {
|
|
||||||
"gpt-4": {"id": "gpt-4", "name": "GPT-4", "maxLength": 24000, "tokenLimit": 8000},
|
|
||||||
"gpt-3.5-turbo": {
|
|
||||||
"id": "gpt-3.5-turbo",
|
|
||||||
"name": "GPT-3.5",
|
|
||||||
"maxLength": 12000,
|
|
||||||
"tokenLimit": 4000,
|
|
||||||
},
|
|
||||||
"gpt-3.5-turbo-16k": {
|
|
||||||
"id": "gpt-3.5-turbo-16k",
|
|
||||||
"name": "GPT-3.5-16k",
|
|
||||||
"maxLength": 48000,
|
|
||||||
"tokenLimit": 16000,
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, chatId: str, **kwargs):
|
|
||||||
print(kwargs)
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"authority": "liaobots.com",
|
|
||||||
"content-type": "application/json",
|
|
||||||
"origin": "https://liaobots.com",
|
|
||||||
"referer": "https://liaobots.com/",
|
|
||||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36",
|
|
||||||
"x-auth-code": "qlcUMVn1KLMhd",
|
|
||||||
}
|
|
||||||
|
|
||||||
json_data = {
|
|
||||||
"conversationId": chatId,
|
|
||||||
"model": models[model],
|
|
||||||
"messages": messages,
|
|
||||||
"key": "",
|
|
||||||
"prompt": "You are ChatGPT, a large language model trained by OpenAI. Follow the user's instructions carefully. Respond using markdown.",
|
|
||||||
}
|
|
||||||
|
|
||||||
response = requests.post("https://liaobots.com/api/chat", headers=headers, json=json_data, stream=True)
|
|
||||||
|
|
||||||
for token in response.iter_content(chunk_size=2046):
|
|
||||||
yield (token.decode("utf-8"))
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,50 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "http://supertest.lockchat.app"
|
|
||||||
model = ["gpt-4", "gpt-3.5-turbo"]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, temperature: float = 0.7, **kwargs):
|
|
||||||
payload = {
|
|
||||||
"temperature": 0.7,
|
|
||||||
"messages": messages,
|
|
||||||
"model": model,
|
|
||||||
"stream": True,
|
|
||||||
}
|
|
||||||
headers = {
|
|
||||||
"user-agent": "ChatX/39 CFNetwork/1408.0.4 Darwin/22.5.0",
|
|
||||||
}
|
|
||||||
response = requests.post(
|
|
||||||
"http://supertest.lockchat.app/v1/chat/completions",
|
|
||||||
json=payload,
|
|
||||||
headers=headers,
|
|
||||||
stream=True,
|
|
||||||
)
|
|
||||||
for token in response.iter_lines():
|
|
||||||
if b"The model: `gpt-4` does not exist" in token:
|
|
||||||
print("error, retrying...")
|
|
||||||
_create_completion(
|
|
||||||
model=model,
|
|
||||||
messages=messages,
|
|
||||||
stream=stream,
|
|
||||||
temperature=temperature,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
if b"content" in token:
|
|
||||||
token = json.loads(token.decode("utf-8").split("data: ")[1])["choices"][0]["delta"].get("content")
|
|
||||||
if token:
|
|
||||||
yield (token)
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,26 +0,0 @@
|
|||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://mishalsgpt.vercel.app"
|
|
||||||
model = ["gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo"]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
}
|
|
||||||
data = {"model": model, "temperature": 0.7, "messages": messages}
|
|
||||||
response = requests.post(url + "/api/openai/v1/chat/completions", headers=headers, json=data, stream=True)
|
|
||||||
yield response.json()["choices"][0]["message"]["content"]
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,37 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
import subprocess
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
url = "https://phind.com"
|
|
||||||
model = ["gpt-4"]
|
|
||||||
supports_stream = True
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
path = os.path.dirname(os.path.realpath(__file__))
|
|
||||||
config = json.dumps({"model": model, "messages": messages}, separators=(",", ":"))
|
|
||||||
|
|
||||||
cmd = ["python", f"{path}/helpers/phind.py", config]
|
|
||||||
|
|
||||||
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
|
||||||
|
|
||||||
for line in iter(p.stdout.readline, b""):
|
|
||||||
if b"<title>Just a moment...</title>" in line:
|
|
||||||
os.system("clear" if os.name == "posix" else "cls")
|
|
||||||
yield "Clouflare error, please try again..."
|
|
||||||
os._exit(0)
|
|
||||||
|
|
||||||
else:
|
|
||||||
if b"ping - 2023-" in line:
|
|
||||||
continue
|
|
||||||
|
|
||||||
yield line.decode("cp1251") # [:-1]
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,29 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
import subprocess
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
url = "https://theb.ai"
|
|
||||||
model = ["gpt-3.5-turbo"]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
path = os.path.dirname(os.path.realpath(__file__))
|
|
||||||
config = json.dumps({"messages": messages, "model": model}, separators=(",", ":"))
|
|
||||||
|
|
||||||
cmd = ["python3", f"{path}/helpers/theb.py", config]
|
|
||||||
|
|
||||||
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
|
||||||
|
|
||||||
for line in iter(p.stdout.readline, b""):
|
|
||||||
yield line.decode("utf-8")
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,514 +0,0 @@
|
|||||||
import base64
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
import queue
|
|
||||||
import threading
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import execjs
|
|
||||||
from curl_cffi import requests
|
|
||||||
|
|
||||||
url = "https://play.vercel.ai"
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
models = {
|
|
||||||
"claude-instant-v1": "anthropic:claude-instant-v1",
|
|
||||||
"claude-v1": "anthropic:claude-v1",
|
|
||||||
"alpaca-7b": "replicate:replicate/alpaca-7b",
|
|
||||||
"stablelm-tuned-alpha-7b": "replicate:stability-ai/stablelm-tuned-alpha-7b",
|
|
||||||
"bloom": "huggingface:bigscience/bloom",
|
|
||||||
"bloomz": "huggingface:bigscience/bloomz",
|
|
||||||
"flan-t5-xxl": "huggingface:google/flan-t5-xxl",
|
|
||||||
"flan-ul2": "huggingface:google/flan-ul2",
|
|
||||||
"gpt-neox-20b": "huggingface:EleutherAI/gpt-neox-20b",
|
|
||||||
"oasst-sft-4-pythia-12b-epoch-3.5": "huggingface:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
|
|
||||||
"santacoder": "huggingface:bigcode/santacoder",
|
|
||||||
"command-medium-nightly": "cohere:command-medium-nightly",
|
|
||||||
"command-xlarge-nightly": "cohere:command-xlarge-nightly",
|
|
||||||
"code-cushman-001": "openai:code-cushman-001",
|
|
||||||
"code-davinci-002": "openai:code-davinci-002",
|
|
||||||
"gpt-3.5-turbo": "openai:gpt-3.5-turbo",
|
|
||||||
"text-ada-001": "openai:text-ada-001",
|
|
||||||
"text-babbage-001": "openai:text-babbage-001",
|
|
||||||
"text-curie-001": "openai:text-curie-001",
|
|
||||||
"text-davinci-002": "openai:text-davinci-002",
|
|
||||||
"text-davinci-003": "openai:text-davinci-003",
|
|
||||||
}
|
|
||||||
model = models.keys()
|
|
||||||
|
|
||||||
vercel_models = {
|
|
||||||
"anthropic:claude-instant-v1": {
|
|
||||||
"id": "anthropic:claude-instant-v1",
|
|
||||||
"provider": "anthropic",
|
|
||||||
"providerHumanName": "Anthropic",
|
|
||||||
"makerHumanName": "Anthropic",
|
|
||||||
"minBillingTier": "hobby",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 1, "range": [0, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0.1, 1]},
|
|
||||||
"topK": {"value": 1, "range": [1, 500]},
|
|
||||||
"presencePenalty": {"value": 1, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 1, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": ["\n\nHuman:"], "range": []},
|
|
||||||
},
|
|
||||||
"name": "claude-instant-v1",
|
|
||||||
},
|
|
||||||
"anthropic:claude-v1": {
|
|
||||||
"id": "anthropic:claude-v1",
|
|
||||||
"provider": "anthropic",
|
|
||||||
"providerHumanName": "Anthropic",
|
|
||||||
"makerHumanName": "Anthropic",
|
|
||||||
"minBillingTier": "hobby",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 1, "range": [0, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0.1, 1]},
|
|
||||||
"topK": {"value": 1, "range": [1, 500]},
|
|
||||||
"presencePenalty": {"value": 1, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 1, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": ["\n\nHuman:"], "range": []},
|
|
||||||
},
|
|
||||||
"name": "claude-v1",
|
|
||||||
},
|
|
||||||
"replicate:replicate/alpaca-7b": {
|
|
||||||
"id": "replicate:replicate/alpaca-7b",
|
|
||||||
"provider": "replicate",
|
|
||||||
"providerHumanName": "Replicate",
|
|
||||||
"makerHumanName": "Stanford",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.75, "range": [0.01, 5]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 512]},
|
|
||||||
"topP": {"value": 0.95, "range": [0.01, 1]},
|
|
||||||
"presencePenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"repetitionPenalty": {"value": 1.1765, "range": [0.01, 5]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
"version": "2014ee1247354f2e81c0b3650d71ca715bc1e610189855f134c30ecb841fae21",
|
|
||||||
"name": "alpaca-7b",
|
|
||||||
},
|
|
||||||
"replicate:stability-ai/stablelm-tuned-alpha-7b": {
|
|
||||||
"id": "replicate:stability-ai/stablelm-tuned-alpha-7b",
|
|
||||||
"provider": "replicate",
|
|
||||||
"makerHumanName": "StabilityAI",
|
|
||||||
"providerHumanName": "Replicate",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.75, "range": [0.01, 5]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 512]},
|
|
||||||
"topP": {"value": 0.95, "range": [0.01, 1]},
|
|
||||||
"presencePenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"repetitionPenalty": {"value": 1.1765, "range": [0.01, 5]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
"version": "4a9a32b4fd86c2d047f1d271fa93972683ec6ef1cf82f402bd021f267330b50b",
|
|
||||||
"name": "stablelm-tuned-alpha-7b",
|
|
||||||
},
|
|
||||||
"huggingface:bigscience/bloom": {
|
|
||||||
"id": "huggingface:bigscience/bloom",
|
|
||||||
"provider": "huggingface",
|
|
||||||
"providerHumanName": "HuggingFace",
|
|
||||||
"makerHumanName": "BigScience",
|
|
||||||
"instructions": "Do NOT talk to Bloom as an entity, it's not a chatbot but a webpage/blog/article completion model. For the best results: mimic a few words of a webpage similar to the content you want to generate. Start a sentence as if YOU were writing a blog, webpage, math post, coding article and Bloom will generate a coherent follow-up.",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 0.95, "range": [0.01, 0.99]},
|
|
||||||
"topK": {"value": 4, "range": [1, 500]},
|
|
||||||
"repetitionPenalty": {"value": 1.03, "range": [0.1, 2]},
|
|
||||||
},
|
|
||||||
"name": "bloom",
|
|
||||||
},
|
|
||||||
"huggingface:bigscience/bloomz": {
|
|
||||||
"id": "huggingface:bigscience/bloomz",
|
|
||||||
"provider": "huggingface",
|
|
||||||
"providerHumanName": "HuggingFace",
|
|
||||||
"makerHumanName": "BigScience",
|
|
||||||
"instructions": 'We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "Translate to English: Je t\'aime.", the model will most likely answer "I love you.".',
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 0.95, "range": [0.01, 0.99]},
|
|
||||||
"topK": {"value": 4, "range": [1, 500]},
|
|
||||||
"repetitionPenalty": {"value": 1.03, "range": [0.1, 2]},
|
|
||||||
},
|
|
||||||
"name": "bloomz",
|
|
||||||
},
|
|
||||||
"huggingface:google/flan-t5-xxl": {
|
|
||||||
"id": "huggingface:google/flan-t5-xxl",
|
|
||||||
"provider": "huggingface",
|
|
||||||
"makerHumanName": "Google",
|
|
||||||
"providerHumanName": "HuggingFace",
|
|
||||||
"name": "flan-t5-xxl",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 0.95, "range": [0.01, 0.99]},
|
|
||||||
"topK": {"value": 4, "range": [1, 500]},
|
|
||||||
"repetitionPenalty": {"value": 1.03, "range": [0.1, 2]},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
"huggingface:google/flan-ul2": {
|
|
||||||
"id": "huggingface:google/flan-ul2",
|
|
||||||
"provider": "huggingface",
|
|
||||||
"providerHumanName": "HuggingFace",
|
|
||||||
"makerHumanName": "Google",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 0.95, "range": [0.01, 0.99]},
|
|
||||||
"topK": {"value": 4, "range": [1, 500]},
|
|
||||||
"repetitionPenalty": {"value": 1.03, "range": [0.1, 2]},
|
|
||||||
},
|
|
||||||
"name": "flan-ul2",
|
|
||||||
},
|
|
||||||
"huggingface:EleutherAI/gpt-neox-20b": {
|
|
||||||
"id": "huggingface:EleutherAI/gpt-neox-20b",
|
|
||||||
"provider": "huggingface",
|
|
||||||
"providerHumanName": "HuggingFace",
|
|
||||||
"makerHumanName": "EleutherAI",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 0.95, "range": [0.01, 0.99]},
|
|
||||||
"topK": {"value": 4, "range": [1, 500]},
|
|
||||||
"repetitionPenalty": {"value": 1.03, "range": [0.1, 2]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
"name": "gpt-neox-20b",
|
|
||||||
},
|
|
||||||
"huggingface:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5": {
|
|
||||||
"id": "huggingface:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
|
|
||||||
"provider": "huggingface",
|
|
||||||
"providerHumanName": "HuggingFace",
|
|
||||||
"makerHumanName": "OpenAssistant",
|
|
||||||
"parameters": {
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"typicalP": {"value": 0.2, "range": [0.1, 0.99]},
|
|
||||||
"repetitionPenalty": {"value": 1, "range": [0.1, 2]},
|
|
||||||
},
|
|
||||||
"name": "oasst-sft-4-pythia-12b-epoch-3.5",
|
|
||||||
},
|
|
||||||
"huggingface:bigcode/santacoder": {
|
|
||||||
"id": "huggingface:bigcode/santacoder",
|
|
||||||
"provider": "huggingface",
|
|
||||||
"providerHumanName": "HuggingFace",
|
|
||||||
"makerHumanName": "BigCode",
|
|
||||||
"instructions": 'The model was trained on GitHub code. As such it is not an instruction model and commands like "Write a function that computes the square root." do not work well. You should phrase commands like they occur in source code such as comments (e.g. # the following function computes the sqrt) or write a function signature and docstring and let the model complete the function body.',
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 0.95, "range": [0.01, 0.99]},
|
|
||||||
"topK": {"value": 4, "range": [1, 500]},
|
|
||||||
"repetitionPenalty": {"value": 1.03, "range": [0.1, 2]},
|
|
||||||
},
|
|
||||||
"name": "santacoder",
|
|
||||||
},
|
|
||||||
"cohere:command-medium-nightly": {
|
|
||||||
"id": "cohere:command-medium-nightly",
|
|
||||||
"provider": "cohere",
|
|
||||||
"providerHumanName": "Cohere",
|
|
||||||
"makerHumanName": "Cohere",
|
|
||||||
"name": "command-medium-nightly",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.9, "range": [0, 2]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0, 1]},
|
|
||||||
"topK": {"value": 0, "range": [0, 500]},
|
|
||||||
"presencePenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
"cohere:command-xlarge-nightly": {
|
|
||||||
"id": "cohere:command-xlarge-nightly",
|
|
||||||
"provider": "cohere",
|
|
||||||
"providerHumanName": "Cohere",
|
|
||||||
"makerHumanName": "Cohere",
|
|
||||||
"name": "command-xlarge-nightly",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.9, "range": [0, 2]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0, 1]},
|
|
||||||
"topK": {"value": 0, "range": [0, 500]},
|
|
||||||
"presencePenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
"openai:gpt-4": {
|
|
||||||
"id": "openai:gpt-4",
|
|
||||||
"provider": "openai",
|
|
||||||
"providerHumanName": "OpenAI",
|
|
||||||
"makerHumanName": "OpenAI",
|
|
||||||
"name": "gpt-4",
|
|
||||||
"minBillingTier": "pro",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.7, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0.1, 1]},
|
|
||||||
"presencePenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
"openai:code-cushman-001": {
|
|
||||||
"id": "openai:code-cushman-001",
|
|
||||||
"provider": "openai",
|
|
||||||
"providerHumanName": "OpenAI",
|
|
||||||
"makerHumanName": "OpenAI",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0.1, 1]},
|
|
||||||
"presencePenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
"name": "code-cushman-001",
|
|
||||||
},
|
|
||||||
"openai:code-davinci-002": {
|
|
||||||
"id": "openai:code-davinci-002",
|
|
||||||
"provider": "openai",
|
|
||||||
"providerHumanName": "OpenAI",
|
|
||||||
"makerHumanName": "OpenAI",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0.1, 1]},
|
|
||||||
"presencePenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
"name": "code-davinci-002",
|
|
||||||
},
|
|
||||||
"openai:gpt-3.5-turbo": {
|
|
||||||
"id": "openai:gpt-3.5-turbo",
|
|
||||||
"provider": "openai",
|
|
||||||
"providerHumanName": "OpenAI",
|
|
||||||
"makerHumanName": "OpenAI",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.7, "range": [0, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0.1, 1]},
|
|
||||||
"topK": {"value": 1, "range": [1, 500]},
|
|
||||||
"presencePenalty": {"value": 1, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 1, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
"name": "gpt-3.5-turbo",
|
|
||||||
},
|
|
||||||
"openai:text-ada-001": {
|
|
||||||
"id": "openai:text-ada-001",
|
|
||||||
"provider": "openai",
|
|
||||||
"providerHumanName": "OpenAI",
|
|
||||||
"makerHumanName": "OpenAI",
|
|
||||||
"name": "text-ada-001",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0.1, 1]},
|
|
||||||
"presencePenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
"openai:text-babbage-001": {
|
|
||||||
"id": "openai:text-babbage-001",
|
|
||||||
"provider": "openai",
|
|
||||||
"providerHumanName": "OpenAI",
|
|
||||||
"makerHumanName": "OpenAI",
|
|
||||||
"name": "text-babbage-001",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0.1, 1]},
|
|
||||||
"presencePenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
"openai:text-curie-001": {
|
|
||||||
"id": "openai:text-curie-001",
|
|
||||||
"provider": "openai",
|
|
||||||
"providerHumanName": "OpenAI",
|
|
||||||
"makerHumanName": "OpenAI",
|
|
||||||
"name": "text-curie-001",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0.1, 1]},
|
|
||||||
"presencePenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
"openai:text-davinci-002": {
|
|
||||||
"id": "openai:text-davinci-002",
|
|
||||||
"provider": "openai",
|
|
||||||
"providerHumanName": "OpenAI",
|
|
||||||
"makerHumanName": "OpenAI",
|
|
||||||
"name": "text-davinci-002",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0.1, 1]},
|
|
||||||
"presencePenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
"openai:text-davinci-003": {
|
|
||||||
"id": "openai:text-davinci-003",
|
|
||||||
"provider": "openai",
|
|
||||||
"providerHumanName": "OpenAI",
|
|
||||||
"makerHumanName": "OpenAI",
|
|
||||||
"name": "text-davinci-003",
|
|
||||||
"parameters": {
|
|
||||||
"temperature": {"value": 0.5, "range": [0.1, 1]},
|
|
||||||
"maximumLength": {"value": 200, "range": [50, 1024]},
|
|
||||||
"topP": {"value": 1, "range": [0.1, 1]},
|
|
||||||
"presencePenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"frequencyPenalty": {"value": 0, "range": [0, 1]},
|
|
||||||
"stopSequences": {"value": [], "range": []},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
# based on https://github.com/ading2210/vercel-llm-api // modified
|
|
||||||
class Client:
|
|
||||||
def __init__(self):
|
|
||||||
self.session = requests.Session()
|
|
||||||
self.headers = {
|
|
||||||
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110 Safari/537.36",
|
|
||||||
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
|
|
||||||
"Accept-Encoding": "gzip, deflate, br",
|
|
||||||
"Accept-Language": "en-US,en;q=0.5",
|
|
||||||
"Te": "trailers",
|
|
||||||
"Upgrade-Insecure-Requests": "1",
|
|
||||||
}
|
|
||||||
self.session.headers.update(self.headers)
|
|
||||||
|
|
||||||
def get_token(self):
|
|
||||||
b64 = self.session.get("https://sdk.vercel.ai/openai.jpeg").text
|
|
||||||
data = json.loads(base64.b64decode(b64))
|
|
||||||
|
|
||||||
code = "const globalThis = {data: `sentinel`}; function token() {return (%s)(%s)}" % (data["c"], data["a"])
|
|
||||||
|
|
||||||
token_string = json.dumps(
|
|
||||||
separators=(",", ":"),
|
|
||||||
obj={"r": execjs.compile(code).call("token"), "t": data["t"]},
|
|
||||||
)
|
|
||||||
|
|
||||||
return base64.b64encode(token_string.encode()).decode()
|
|
||||||
|
|
||||||
def get_default_params(self, model_id):
|
|
||||||
return {key: param["value"] for key, param in vercel_models[model_id]["parameters"].items()}
|
|
||||||
|
|
||||||
def generate(self, model_id: str, prompt: str, params: dict = {}):
|
|
||||||
if not ":" in model_id:
|
|
||||||
model_id = models[model_id]
|
|
||||||
|
|
||||||
defaults = self.get_default_params(model_id)
|
|
||||||
|
|
||||||
payload = (
|
|
||||||
defaults
|
|
||||||
| params
|
|
||||||
| {
|
|
||||||
"prompt": prompt,
|
|
||||||
"model": model_id,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
headers = self.headers | {
|
|
||||||
"Accept-Encoding": "gzip, deflate, br",
|
|
||||||
"Custom-Encoding": self.get_token(),
|
|
||||||
"Host": "sdk.vercel.ai",
|
|
||||||
"Origin": "https://sdk.vercel.ai",
|
|
||||||
"Referrer": "https://sdk.vercel.ai",
|
|
||||||
"Sec-Fetch-Dest": "empty",
|
|
||||||
"Sec-Fetch-Mode": "cors",
|
|
||||||
"Sec-Fetch-Site": "same-origin",
|
|
||||||
}
|
|
||||||
|
|
||||||
chunks_queue = queue.Queue()
|
|
||||||
error = None
|
|
||||||
response = None
|
|
||||||
|
|
||||||
def callback(data):
|
|
||||||
chunks_queue.put(data.decode())
|
|
||||||
|
|
||||||
def request_thread():
|
|
||||||
nonlocal response, error
|
|
||||||
for _ in range(3):
|
|
||||||
try:
|
|
||||||
response = self.session.post(
|
|
||||||
"https://sdk.vercel.ai/api/generate",
|
|
||||||
json=payload,
|
|
||||||
headers=headers,
|
|
||||||
content_callback=callback,
|
|
||||||
)
|
|
||||||
response.raise_for_status()
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
if _ == 2:
|
|
||||||
error = e
|
|
||||||
|
|
||||||
else:
|
|
||||||
continue
|
|
||||||
|
|
||||||
thread = threading.Thread(target=request_thread, daemon=True)
|
|
||||||
thread.start()
|
|
||||||
|
|
||||||
text = ""
|
|
||||||
index = 0
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
chunk = chunks_queue.get(block=True, timeout=0.1)
|
|
||||||
|
|
||||||
except queue.Empty:
|
|
||||||
if error:
|
|
||||||
raise error
|
|
||||||
|
|
||||||
elif response:
|
|
||||||
break
|
|
||||||
|
|
||||||
else:
|
|
||||||
continue
|
|
||||||
|
|
||||||
text += chunk
|
|
||||||
lines = text.split("\n")
|
|
||||||
|
|
||||||
if len(lines) - 1 > index:
|
|
||||||
new = lines[index:-1]
|
|
||||||
for word in new:
|
|
||||||
yield json.loads(word)
|
|
||||||
index = len(lines) - 1
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
yield "Vercel is currently not working."
|
|
||||||
return
|
|
||||||
|
|
||||||
conversation = "This is a conversation between a human and a language model, respond to the last message accordingly, referring to the past history of messages if needed.\n"
|
|
||||||
|
|
||||||
for message in messages:
|
|
||||||
conversation += "%s: %s\n" % (message["role"], message["content"])
|
|
||||||
|
|
||||||
conversation += "assistant: "
|
|
||||||
|
|
||||||
completion = Client().generate(model, conversation)
|
|
||||||
|
|
||||||
for token in completion:
|
|
||||||
yield token
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,39 +0,0 @@
|
|||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://api.gptplus.one"
|
|
||||||
model = [
|
|
||||||
"gpt-3.5-turbo",
|
|
||||||
"gpt-3.5-turbo-16k",
|
|
||||||
"gpt-3.5-turbo-16k-0613",
|
|
||||||
"gpt-3.5-turbo-0613",
|
|
||||||
]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, temperature: float = 0.7, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
"Accept": "*/*",
|
|
||||||
"Accept-Language": "ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7,ja;q=0.6,zh-TW;q=0.5,zh;q=0.4",
|
|
||||||
}
|
|
||||||
data = {
|
|
||||||
"messages": messages,
|
|
||||||
"model": model,
|
|
||||||
}
|
|
||||||
response = requests.post("https://api.gptplus.one/chat-process", json=data, stream=True)
|
|
||||||
print(response)
|
|
||||||
|
|
||||||
for token in response.iter_content(chunk_size=None):
|
|
||||||
yield (token.decode("utf-8"))
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,72 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
import random
|
|
||||||
import string
|
|
||||||
import time
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://wewordle.org/gptapi/v1/android/turbo"
|
|
||||||
model = ["gpt-3.5-turbo"]
|
|
||||||
supports_stream = False
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
base = ""
|
|
||||||
for message in messages:
|
|
||||||
base += "%s: %s\n" % (message["role"], message["content"])
|
|
||||||
base += "assistant:"
|
|
||||||
# randomize user id and app id
|
|
||||||
_user_id = "".join(random.choices(f"{string.ascii_lowercase}{string.digits}", k=16))
|
|
||||||
_app_id = "".join(random.choices(f"{string.ascii_lowercase}{string.digits}", k=31))
|
|
||||||
# make current date with format utc
|
|
||||||
_request_date = time.strftime("%Y-%m-%dT%H:%M:%S.000Z", time.gmtime())
|
|
||||||
headers = {
|
|
||||||
"accept": "*/*",
|
|
||||||
"pragma": "no-cache",
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
"Connection": "keep-alive",
|
|
||||||
}
|
|
||||||
data = {
|
|
||||||
"user": _user_id,
|
|
||||||
"messages": [{"role": "user", "content": base}],
|
|
||||||
"subscriber": {
|
|
||||||
"originalPurchaseDate": None,
|
|
||||||
"originalApplicationVersion": None,
|
|
||||||
"allPurchaseDatesMillis": {},
|
|
||||||
"entitlements": {"active": {}, "all": {}},
|
|
||||||
"allPurchaseDates": {},
|
|
||||||
"allExpirationDatesMillis": {},
|
|
||||||
"allExpirationDates": {},
|
|
||||||
"originalAppUserId": f"$RCAnonymousID:{_app_id}",
|
|
||||||
"latestExpirationDate": None,
|
|
||||||
"requestDate": _request_date,
|
|
||||||
"latestExpirationDateMillis": None,
|
|
||||||
"nonSubscriptionTransactions": [],
|
|
||||||
"originalPurchaseDateMillis": None,
|
|
||||||
"managementURL": None,
|
|
||||||
"allPurchasedProductIdentifiers": [],
|
|
||||||
"firstSeen": _request_date,
|
|
||||||
"activeSubscriptions": [],
|
|
||||||
},
|
|
||||||
}
|
|
||||||
response = requests.post(url, headers=headers, data=json.dumps(data))
|
|
||||||
if response.status_code == 200:
|
|
||||||
_json = response.json()
|
|
||||||
if "message" in _json:
|
|
||||||
message_content = _json["message"]["content"]
|
|
||||||
message_content = message_content.replace("**assistant:** ", "")
|
|
||||||
yield message_content
|
|
||||||
else:
|
|
||||||
print(f"Error Occurred::{response.status_code}")
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,46 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://xiaor.eu.org"
|
|
||||||
model = [
|
|
||||||
"gpt-3.5-turbo",
|
|
||||||
"gpt-3.5-turbo-16k",
|
|
||||||
"gpt-3.5-turbo-16k-0613",
|
|
||||||
"gpt-3.5-turbo-0613",
|
|
||||||
]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, temperature: float = 0.7, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
}
|
|
||||||
data = {
|
|
||||||
"model": model,
|
|
||||||
"temperature": 0.7,
|
|
||||||
"presence_penalty": 0,
|
|
||||||
"messages": messages,
|
|
||||||
}
|
|
||||||
response = requests.post(url + "/p1/v1/chat/completions", json=data, stream=True)
|
|
||||||
|
|
||||||
if stream:
|
|
||||||
for chunk in response.iter_content(chunk_size=None):
|
|
||||||
chunk = chunk.decode("utf-8")
|
|
||||||
if chunk.strip():
|
|
||||||
message = json.loads(chunk)["choices"][0]["message"]["content"]
|
|
||||||
yield message
|
|
||||||
else:
|
|
||||||
message = response.json()["choices"][0]["message"]["content"]
|
|
||||||
yield message
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,20 +0,0 @@
|
|||||||
import json
|
|
||||||
import os
|
|
||||||
import subprocess
|
|
||||||
|
|
||||||
url = "https://you.com"
|
|
||||||
model = "gpt-3.5-turbo"
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
path = os.path.dirname(os.path.realpath(__file__))
|
|
||||||
config = json.dumps({"messages": messages}, separators=(",", ":"))
|
|
||||||
|
|
||||||
cmd = ["python3", f"{path}/helpers/you.py", config]
|
|
||||||
|
|
||||||
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
|
||||||
|
|
||||||
for line in iter(p.stdout.readline, b""):
|
|
||||||
yield line.decode("utf-8") # [:-1]
|
|
@ -1,45 +0,0 @@
|
|||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://chat9.yqcloud.top/"
|
|
||||||
model = [
|
|
||||||
"gpt-3.5-turbo",
|
|
||||||
]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, chatId: str, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"authority": "api.aichatos.cloud",
|
|
||||||
"origin": "https://chat9.yqcloud.top",
|
|
||||||
"referer": "https://chat9.yqcloud.top/",
|
|
||||||
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36",
|
|
||||||
}
|
|
||||||
|
|
||||||
json_data = {
|
|
||||||
"prompt": str(messages),
|
|
||||||
"userId": f"#/chat/{chatId}",
|
|
||||||
"network": True,
|
|
||||||
"apikey": "",
|
|
||||||
"system": "",
|
|
||||||
"withoutContext": False,
|
|
||||||
}
|
|
||||||
response = requests.post(
|
|
||||||
"https://api.aichatos.cloud/api/generateStream",
|
|
||||||
headers=headers,
|
|
||||||
json=json_data,
|
|
||||||
stream=True,
|
|
||||||
)
|
|
||||||
for token in response.iter_content(chunk_size=2046):
|
|
||||||
yield (token.decode("utf-8"))
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,63 +0,0 @@
|
|||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://gptleg.zeabur.app"
|
|
||||||
model = [
|
|
||||||
"gpt-3.5-turbo",
|
|
||||||
"gpt-3.5-turbo-0301",
|
|
||||||
"gpt-3.5-turbo-16k",
|
|
||||||
"gpt-4",
|
|
||||||
"gpt-4-0613",
|
|
||||||
]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"Authority": "chat.dfehub.com",
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
"Method": "POST",
|
|
||||||
"Path": "/api/openai/v1/chat/completions",
|
|
||||||
"Scheme": "https",
|
|
||||||
"Accept": "text/event-stream",
|
|
||||||
"Accept-Language": "pt-BR,pt;q=0.9,en-US;q=0.8,en;q=0.7,zh-CN;q=0.6,zh;q=0.5",
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
"Origin": "https://gptleg.zeabur.app",
|
|
||||||
"Referer": "https://gptleg.zeabur.app/",
|
|
||||||
"Sec-Ch-Ua": '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
|
|
||||||
"Sec-Ch-Ua-Mobile": "?0",
|
|
||||||
"Sec-Ch-Ua-Platform": '"Windows"',
|
|
||||||
"Sec-Fetch-Dest": "empty",
|
|
||||||
"Sec-Fetch-Mode": "cors",
|
|
||||||
"Sec-Fetch-Site": "same-origin",
|
|
||||||
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36",
|
|
||||||
"X-Requested-With": "XMLHttpRequest",
|
|
||||||
}
|
|
||||||
|
|
||||||
data = {
|
|
||||||
"model": model,
|
|
||||||
"temperature": 0.7,
|
|
||||||
"max_tokens": "16000",
|
|
||||||
"presence_penalty": 0,
|
|
||||||
"messages": messages,
|
|
||||||
}
|
|
||||||
|
|
||||||
response = requests.post(
|
|
||||||
url + "/api/openai/v1/chat/completions",
|
|
||||||
headers=headers,
|
|
||||||
json=data,
|
|
||||||
stream=stream,
|
|
||||||
)
|
|
||||||
|
|
||||||
yield response.json()["choices"][0]["message"]["content"]
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,53 +0,0 @@
|
|||||||
import json
|
|
||||||
import sys
|
|
||||||
from re import findall
|
|
||||||
|
|
||||||
from curl_cffi import requests
|
|
||||||
|
|
||||||
config = json.loads(sys.argv[1])
|
|
||||||
prompt = config["messages"][-1]["content"]
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"authority": "api.gptplus.one",
|
|
||||||
"accept": "application/json, text/plain, */*",
|
|
||||||
"accept-language": "ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7,ja;q=0.6,zh-TW;q=0.5,zh;q=0.4",
|
|
||||||
"content-type": "application/octet-stream",
|
|
||||||
"origin": "https://ai.gptforlove.com/",
|
|
||||||
"referer": "https://ai.gptforlove.com/",
|
|
||||||
"sec-ch-ua": '"Google Chrome";v="113", "Chromium";v="113", "Not-A.Brand";v="24"',
|
|
||||||
"sec-ch-ua-mobile": "?0",
|
|
||||||
"sec-ch-ua-platform": '"macOS"',
|
|
||||||
"sec-fetch-dest": "empty",
|
|
||||||
"sec-fetch-mode": "cors",
|
|
||||||
"sec-fetch-site": "cross-site",
|
|
||||||
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36",
|
|
||||||
}
|
|
||||||
|
|
||||||
json_data = {"prompt": prompt, "options": {}}
|
|
||||||
|
|
||||||
|
|
||||||
def format(chunk):
|
|
||||||
try:
|
|
||||||
completion_chunk = findall(r'content":"(.*)"},"fin', chunk.decode())[0]
|
|
||||||
print(completion_chunk, flush=True, end="")
|
|
||||||
|
|
||||||
except Exception:
|
|
||||||
print(f"[ERROR] an error occured, retrying... | [[{chunk.decode()}]]", flush=True)
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
response = requests.post(
|
|
||||||
"https://api.gptplus.one/api/chat-process",
|
|
||||||
headers=headers,
|
|
||||||
json=json_data,
|
|
||||||
content_callback=format,
|
|
||||||
impersonate="chrome110",
|
|
||||||
)
|
|
||||||
|
|
||||||
exit(0)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print("[ERROR] an error occured, retrying... |", e, flush=True)
|
|
||||||
continue
|
|
@ -1,81 +0,0 @@
|
|||||||
import datetime
|
|
||||||
import json
|
|
||||||
import sys
|
|
||||||
import urllib.parse
|
|
||||||
|
|
||||||
from curl_cffi import requests
|
|
||||||
|
|
||||||
config = json.loads(sys.argv[1])
|
|
||||||
prompt = config["messages"][-1]["content"]
|
|
||||||
|
|
||||||
skill = "expert" if config["model"] == "gpt-4" else "intermediate"
|
|
||||||
|
|
||||||
json_data = json.dumps(
|
|
||||||
{
|
|
||||||
"question": prompt,
|
|
||||||
"options": {
|
|
||||||
"skill": skill,
|
|
||||||
"date": datetime.datetime.now().strftime("%d/%m/%Y"),
|
|
||||||
"language": "en",
|
|
||||||
"detailed": True,
|
|
||||||
"creative": True,
|
|
||||||
"customLinks": [],
|
|
||||||
},
|
|
||||||
},
|
|
||||||
separators=(",", ":"),
|
|
||||||
)
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
"Pragma": "no-cache",
|
|
||||||
"Accept": "*/*",
|
|
||||||
"Sec-Fetch-Site": "same-origin",
|
|
||||||
"Accept-Language": "en-GB,en;q=0.9",
|
|
||||||
"Cache-Control": "no-cache",
|
|
||||||
"Sec-Fetch-Mode": "cors",
|
|
||||||
"Content-Length": str(len(json_data)),
|
|
||||||
"Origin": "https://www.phind.com",
|
|
||||||
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.4 Safari/605.1.15",
|
|
||||||
"Referer": f"https://www.phind.com/search?q={urllib.parse.quote(prompt)}&source=searchbox",
|
|
||||||
"Connection": "keep-alive",
|
|
||||||
"Host": "www.phind.com",
|
|
||||||
"Sec-Fetch-Dest": "empty",
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def output(chunk):
|
|
||||||
try:
|
|
||||||
if b"PHIND_METADATA" in chunk:
|
|
||||||
return
|
|
||||||
|
|
||||||
if chunk == b"data: \r\ndata: \r\ndata: \r\n\r\n":
|
|
||||||
chunk = b"data: \n\r\n\r\n"
|
|
||||||
|
|
||||||
chunk = chunk.decode()
|
|
||||||
|
|
||||||
chunk = chunk.replace("data: \r\n\r\ndata: ", "data: \n")
|
|
||||||
chunk = chunk.replace("\r\ndata: \r\ndata: \r\n\r\n", "\n\r\n\r\n")
|
|
||||||
chunk = chunk.replace("data: ", "").replace("\r\n\r\n", "")
|
|
||||||
|
|
||||||
print(chunk, flush=True, end="")
|
|
||||||
|
|
||||||
except json.decoder.JSONDecodeError:
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
response = requests.post(
|
|
||||||
"https://www.phind.com/api/infer/answer",
|
|
||||||
headers=headers,
|
|
||||||
data=json_data,
|
|
||||||
content_callback=output,
|
|
||||||
timeout=999999,
|
|
||||||
impersonate="safari15_5",
|
|
||||||
)
|
|
||||||
|
|
||||||
exit(0)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print("an error occured, retrying... |", e, flush=True)
|
|
||||||
continue
|
|
@ -1,53 +0,0 @@
|
|||||||
import json
|
|
||||||
import sys
|
|
||||||
from re import findall
|
|
||||||
|
|
||||||
from curl_cffi import requests
|
|
||||||
|
|
||||||
config = json.loads(sys.argv[1])
|
|
||||||
prompt = config["messages"][-1]["content"]
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"authority": "chatbot.theb.ai",
|
|
||||||
"accept": "application/json, text/plain, */*",
|
|
||||||
"accept-language": "en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3",
|
|
||||||
"content-type": "application/json",
|
|
||||||
"origin": "https://chatbot.theb.ai",
|
|
||||||
"referer": "https://chatbot.theb.ai/",
|
|
||||||
"sec-ch-ua": '"Google Chrome";v="113", "Chromium";v="113", "Not-A.Brand";v="24"',
|
|
||||||
"sec-ch-ua-mobile": "?0",
|
|
||||||
"sec-ch-ua-platform": '"macOS"',
|
|
||||||
"sec-fetch-dest": "empty",
|
|
||||||
"sec-fetch-mode": "cors",
|
|
||||||
"sec-fetch-site": "same-origin",
|
|
||||||
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36",
|
|
||||||
}
|
|
||||||
|
|
||||||
json_data = {"prompt": prompt, "options": {}}
|
|
||||||
|
|
||||||
|
|
||||||
def format(chunk):
|
|
||||||
try:
|
|
||||||
completion_chunk = findall(r'content":"(.*)"},"fin', chunk.decode())[0]
|
|
||||||
print(completion_chunk, flush=True, end="")
|
|
||||||
|
|
||||||
except Exception:
|
|
||||||
print(f"[ERROR] an error occured, retrying... | [[{chunk.decode()}]]", flush=True)
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
response = requests.post(
|
|
||||||
"https://chatbot.theb.ai/api/chat-process",
|
|
||||||
headers=headers,
|
|
||||||
json=json_data,
|
|
||||||
content_callback=format,
|
|
||||||
impersonate="chrome110",
|
|
||||||
)
|
|
||||||
|
|
||||||
exit(0)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print("[ERROR] an error occured, retrying... |", e, flush=True)
|
|
||||||
continue
|
|
@ -1,82 +0,0 @@
|
|||||||
import json
|
|
||||||
import sys
|
|
||||||
import urllib.parse
|
|
||||||
|
|
||||||
from curl_cffi import requests
|
|
||||||
|
|
||||||
config = json.loads(sys.argv[1])
|
|
||||||
messages = config["messages"]
|
|
||||||
prompt = ""
|
|
||||||
|
|
||||||
|
|
||||||
def transform(messages: list) -> list:
|
|
||||||
result = []
|
|
||||||
i = 0
|
|
||||||
|
|
||||||
while i < len(messages):
|
|
||||||
if messages[i]["role"] == "user":
|
|
||||||
question = messages[i]["content"]
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
if i < len(messages) and messages[i]["role"] == "assistant":
|
|
||||||
answer = messages[i]["content"]
|
|
||||||
i += 1
|
|
||||||
else:
|
|
||||||
answer = ""
|
|
||||||
|
|
||||||
result.append({"question": question, "answer": answer})
|
|
||||||
|
|
||||||
elif messages[i]["role"] == "assistant":
|
|
||||||
result.append({"question": "", "answer": messages[i]["content"]})
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
elif messages[i]["role"] == "system":
|
|
||||||
result.append({"question": messages[i]["content"], "answer": ""})
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/x-www-form-urlencoded",
|
|
||||||
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
|
|
||||||
"Sec-Fetch-Site": "same-origin",
|
|
||||||
"Accept-Language": "en-GB,en;q=0.9",
|
|
||||||
"Sec-Fetch-Mode": "navigate",
|
|
||||||
"Host": "you.com",
|
|
||||||
"Origin": "https://you.com",
|
|
||||||
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.4 Safari/605.1.15",
|
|
||||||
"Referer": "https://you.com/api/streamingSearch?q=nice&safeSearch=Moderate&onShoppingPage=false&mkt=&responseFilter=WebPages,Translations,TimeZone,Computation,RelatedSearches&domain=youchat&queryTraceId=7a6671f8-5881-404d-8ea3-c3f8301f85ba&chat=%5B%7B%22question%22%3A%22hi%22%2C%22answer%22%3A%22Hello!%20How%20can%20I%20assist%20you%20today%3F%22%7D%5D&chatId=7a6671f8-5881-404d-8ea3-c3f8301f85ba&__cf_chl_tk=ex2bw6vn5vbLsUm8J5rDYUC0Bjzc1XZqka6vUl6765A-1684108495-0-gaNycGzNDtA",
|
|
||||||
"Connection": "keep-alive",
|
|
||||||
"Sec-Fetch-Dest": "document",
|
|
||||||
"Priority": "u=0, i",
|
|
||||||
}
|
|
||||||
|
|
||||||
if messages[-1]["role"] == "user":
|
|
||||||
prompt = messages[-1]["content"]
|
|
||||||
messages = messages[:-1]
|
|
||||||
|
|
||||||
params = urllib.parse.urlencode({"q": prompt, "domain": "youchat", "chat": transform(messages)})
|
|
||||||
|
|
||||||
|
|
||||||
def output(chunk):
|
|
||||||
if b'"youChatToken"' in chunk:
|
|
||||||
chunk_json = json.loads(chunk.decode().split("data: ")[1])
|
|
||||||
|
|
||||||
print(chunk_json["youChatToken"], flush=True, end="")
|
|
||||||
|
|
||||||
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
response = requests.get(
|
|
||||||
f"https://you.com/api/streamingSearch?{params}",
|
|
||||||
headers=headers,
|
|
||||||
content_callback=output,
|
|
||||||
impersonate="safari15_5",
|
|
||||||
)
|
|
||||||
|
|
||||||
exit(0)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print("an error occured, retrying... |", e, flush=True)
|
|
||||||
continue
|
|
@ -1,44 +0,0 @@
|
|||||||
import os
|
|
||||||
from typing import get_type_hints
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
url = "https://hteyun.com"
|
|
||||||
model = [
|
|
||||||
"gpt-3.5-turbo",
|
|
||||||
"gpt-3.5-turbo-16k",
|
|
||||||
"gpt-3.5-turbo-16k-0613",
|
|
||||||
"gpt-3.5-turbo-0613",
|
|
||||||
]
|
|
||||||
supports_stream = True
|
|
||||||
needs_auth = False
|
|
||||||
|
|
||||||
|
|
||||||
def _create_completion(model: str, messages: list, stream: bool, temperature: float = 0.7, **kwargs):
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
"Accept": "application/json, text/plain, */*",
|
|
||||||
"Accept-Language": "ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7,ja;q=0.6,zh-TW;q=0.5,zh;q=0.4",
|
|
||||||
"Origin": "https://hteyun.com",
|
|
||||||
"Referer": "https://hteyun.com/chat/",
|
|
||||||
}
|
|
||||||
data = {
|
|
||||||
"messages": messages,
|
|
||||||
"model": model,
|
|
||||||
"systemMessage": "You are ChatGPT, a large language model trained by OpenAI. Follow the user's instructions carefully. Respond using russian language.",
|
|
||||||
"temperature": 0.7,
|
|
||||||
"presence_penalty": 0,
|
|
||||||
}
|
|
||||||
response = requests.post(url + "/api/chat-stream", json=data, headers=headers, stream=True)
|
|
||||||
print(response.json())
|
|
||||||
|
|
||||||
# Извлечение текста из response
|
|
||||||
return response.json()["text"]
|
|
||||||
|
|
||||||
|
|
||||||
params = f"g4f.Providers.{os.path.basename(__file__)[:-3]} supports: " + "(%s)" % ", ".join(
|
|
||||||
[
|
|
||||||
f"{name}: {get_type_hints(_create_completion)[name].__name__}"
|
|
||||||
for name in _create_completion.__code__.co_varnames[: _create_completion.__code__.co_argcount]
|
|
||||||
]
|
|
||||||
)
|
|
@ -1,35 +0,0 @@
|
|||||||
from . import Provider
|
|
||||||
from .Providers import (
|
|
||||||
Aichat,
|
|
||||||
Ails,
|
|
||||||
AiService,
|
|
||||||
Bard,
|
|
||||||
Better,
|
|
||||||
Bing,
|
|
||||||
ChatFree,
|
|
||||||
ChatgptAi,
|
|
||||||
ChatgptLogin,
|
|
||||||
DeepAi,
|
|
||||||
Easychat,
|
|
||||||
Ezcht,
|
|
||||||
Fakeopen,
|
|
||||||
Forefront,
|
|
||||||
GetGpt,
|
|
||||||
Gravityengine,
|
|
||||||
H2o,
|
|
||||||
Liaobots,
|
|
||||||
Lockchat,
|
|
||||||
Mishalsgpt,
|
|
||||||
Phind,
|
|
||||||
Theb,
|
|
||||||
Vercel,
|
|
||||||
Weuseing,
|
|
||||||
Wewordle,
|
|
||||||
Xiaor,
|
|
||||||
You,
|
|
||||||
Yqcloud,
|
|
||||||
Zeabur,
|
|
||||||
hteyun,
|
|
||||||
)
|
|
||||||
|
|
||||||
Palm = Bard
|
|
@ -1,5 +0,0 @@
|
|||||||
## 🚀 API G4F
|
|
||||||
|
|
||||||
This API is built upon the [gpt4free](https://github.com/xtekky/gpt4free) project.
|
|
||||||
|
|
||||||
|
|
@ -1,57 +0,0 @@
|
|||||||
import sys
|
|
||||||
|
|
||||||
from g4f.models import Model, ModelUtils
|
|
||||||
|
|
||||||
from . import Provider
|
|
||||||
|
|
||||||
|
|
||||||
class ChatCompletion:
|
|
||||||
@staticmethod
|
|
||||||
def create(
|
|
||||||
model: Model.model or str,
|
|
||||||
messages: list,
|
|
||||||
provider: Provider.Provider = None,
|
|
||||||
stream: bool = False,
|
|
||||||
auth: str = False,
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
kwargs["auth"] = auth
|
|
||||||
|
|
||||||
if provider and provider.needs_auth and not auth:
|
|
||||||
print(
|
|
||||||
f'ValueError: {provider.__name__} requires authentication (use auth="cookie or token or jwt ..." param)',
|
|
||||||
file=sys.stderr,
|
|
||||||
)
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
try:
|
|
||||||
if isinstance(model, str):
|
|
||||||
try:
|
|
||||||
model = ModelUtils.convert[model]
|
|
||||||
except KeyError:
|
|
||||||
raise Exception(f"The model: {model} does not exist")
|
|
||||||
|
|
||||||
engine = model.best_provider if not provider else provider
|
|
||||||
|
|
||||||
if not engine.supports_stream and stream == True:
|
|
||||||
print(
|
|
||||||
f"ValueError: {engine.__name__} does not support 'stream' argument",
|
|
||||||
file=sys.stderr,
|
|
||||||
)
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
print(f"Using {engine.__name__} provider")
|
|
||||||
|
|
||||||
return (
|
|
||||||
engine._create_completion(model.name, messages, stream, **kwargs)
|
|
||||||
if stream
|
|
||||||
else "".join(engine._create_completion(model.name, messages, stream, **kwargs))
|
|
||||||
)
|
|
||||||
except TypeError as e:
|
|
||||||
print(e)
|
|
||||||
arg: str = str(e).split("'")[1]
|
|
||||||
print(
|
|
||||||
f"ValueError: {engine.__name__} does not support '{arg}' argument",
|
|
||||||
file=sys.stderr,
|
|
||||||
)
|
|
||||||
sys.exit(1)
|
|
@ -1,128 +0,0 @@
|
|||||||
import uuid
|
|
||||||
|
|
||||||
import g4f
|
|
||||||
from g4f import ChatCompletion
|
|
||||||
|
|
||||||
TEST_PROMPT = "Generate a sentence with 'ocean'"
|
|
||||||
EXPECTED_RESPONSE_CONTAINS = "ocean"
|
|
||||||
|
|
||||||
|
|
||||||
class Provider:
|
|
||||||
def __init__(self, name, models):
|
|
||||||
"""
|
|
||||||
Initialize the provider with its name and models.
|
|
||||||
"""
|
|
||||||
self.name = name
|
|
||||||
self.models = models if isinstance(models, list) else [models]
|
|
||||||
|
|
||||||
def __str__(self):
|
|
||||||
return self.name
|
|
||||||
|
|
||||||
|
|
||||||
class ModelProviderManager:
|
|
||||||
def __init__(self):
|
|
||||||
"""
|
|
||||||
Initialize the manager that manages the working (active) providers for each model.
|
|
||||||
"""
|
|
||||||
self._working_model_providers = {}
|
|
||||||
|
|
||||||
def add_provider(self, model, provider_name):
|
|
||||||
"""
|
|
||||||
Add a provider to the working provider list of the specified model.
|
|
||||||
"""
|
|
||||||
if model not in self._working_model_providers:
|
|
||||||
self._working_model_providers[model] = []
|
|
||||||
self._working_model_providers[model].append(provider_name)
|
|
||||||
|
|
||||||
def get_working_providers(self):
|
|
||||||
"""
|
|
||||||
Return the currently active providers for each model.
|
|
||||||
"""
|
|
||||||
return self._working_model_providers
|
|
||||||
|
|
||||||
|
|
||||||
def _fetch_providers_having_models():
|
|
||||||
"""
|
|
||||||
Get providers that have models from g4f.Providers.
|
|
||||||
"""
|
|
||||||
model_providers = []
|
|
||||||
|
|
||||||
for provider_name in dir(g4f.Provider):
|
|
||||||
provider = getattr(g4f.Provider, provider_name)
|
|
||||||
|
|
||||||
if _is_provider_applicable(provider):
|
|
||||||
model_providers.append(Provider(provider_name, provider.model))
|
|
||||||
|
|
||||||
return model_providers
|
|
||||||
|
|
||||||
|
|
||||||
def _is_provider_applicable(provider):
|
|
||||||
"""
|
|
||||||
Check if the provider has a model and doesn't require authentication.
|
|
||||||
"""
|
|
||||||
return (
|
|
||||||
hasattr(provider, "model")
|
|
||||||
and hasattr(provider, "_create_completion")
|
|
||||||
and hasattr(provider, "needs_auth")
|
|
||||||
and not provider.needs_auth
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def _generate_test_messages():
|
|
||||||
"""
|
|
||||||
Generate messages for testing.
|
|
||||||
"""
|
|
||||||
return [
|
|
||||||
{"role": "system", "content": "You are a trained AI assistant."},
|
|
||||||
{"role": "user", "content": TEST_PROMPT},
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
def _manage_chat_completion(manager, model_providers, test_messages):
|
|
||||||
"""
|
|
||||||
Generate chat completion for each provider's models and handle positive and negative results.
|
|
||||||
"""
|
|
||||||
for provider in model_providers:
|
|
||||||
for model in provider.models:
|
|
||||||
try:
|
|
||||||
response = _generate_chat_response(provider.name, model, test_messages)
|
|
||||||
if EXPECTED_RESPONSE_CONTAINS in response.lower():
|
|
||||||
_print_success_response(provider, model)
|
|
||||||
manager.add_provider(model, provider.name)
|
|
||||||
else:
|
|
||||||
raise Exception(f"Unexpected response: {response}")
|
|
||||||
except Exception as error:
|
|
||||||
_print_error_response(provider, model, error)
|
|
||||||
|
|
||||||
|
|
||||||
def _generate_chat_response(provider_name, model, test_messages):
|
|
||||||
"""
|
|
||||||
Generate a chat response given a provider name, a model, and test messages.
|
|
||||||
"""
|
|
||||||
return ChatCompletion.create(
|
|
||||||
model=model,
|
|
||||||
messages=test_messages,
|
|
||||||
chatId=str(uuid.uuid4()),
|
|
||||||
provider=getattr(g4f.Provider, provider_name),
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def _print_success_response(provider, model):
|
|
||||||
print(f"\u2705 [{provider}] - [{model}]: Success")
|
|
||||||
|
|
||||||
|
|
||||||
def _print_error_response(provider, model, error):
|
|
||||||
print(f"\u26D4 [{provider}] - [{model}]: Error - {str(error)}")
|
|
||||||
|
|
||||||
|
|
||||||
def get_active_model_providers():
|
|
||||||
"""
|
|
||||||
Get providers that are currently working (active).
|
|
||||||
"""
|
|
||||||
model_providers = _fetch_providers_having_models()
|
|
||||||
test_messages = _generate_test_messages()
|
|
||||||
manager = ModelProviderManager()
|
|
||||||
|
|
||||||
_manage_chat_completion(manager, model_providers, test_messages)
|
|
||||||
|
|
||||||
return manager.get_working_providers()
|
|
@ -1,223 +0,0 @@
|
|||||||
from g4f import Provider
|
|
||||||
|
|
||||||
|
|
||||||
class Model:
|
|
||||||
class model:
|
|
||||||
name: str
|
|
||||||
base_provider: str
|
|
||||||
best_provider: str
|
|
||||||
|
|
||||||
class gpt_35_turbo:
|
|
||||||
name: str = "gpt-3.5-turbo"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Wewordle
|
|
||||||
|
|
||||||
class gpt_35_turbo_0613:
|
|
||||||
name: str = "gpt-3.5-turbo-0613"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Zeabur
|
|
||||||
|
|
||||||
class gpt_35_turbo_0301:
|
|
||||||
name: str = "gpt-3.5-turbo-0301"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Zeabur
|
|
||||||
|
|
||||||
class gpt_35_turbo_16k_0613:
|
|
||||||
name: str = "gpt-3.5-turbo-16k-0613"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Zeabur
|
|
||||||
|
|
||||||
class gpt_35_turbo_16k:
|
|
||||||
name: str = "gpt-3.5-turbo-16k"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.ChatFree
|
|
||||||
|
|
||||||
class gpt_4_dev:
|
|
||||||
name: str = "gpt-4-for-dev"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Phind
|
|
||||||
|
|
||||||
class gpt_4:
|
|
||||||
name: str = "gpt-4"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.ChatgptAi
|
|
||||||
|
|
||||||
class gpt_4_0613:
|
|
||||||
name: str = "gpt-4-0613"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Lockchat
|
|
||||||
best_providers: list = [Provider.Bing, Provider.Lockchat]
|
|
||||||
|
|
||||||
class claude_instant_v1_100k:
|
|
||||||
name: str = "claude-instant-v1-100k"
|
|
||||||
base_provider: str = "anthropic"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class claude_instant_v1:
|
|
||||||
name: str = "claude-instant-v1"
|
|
||||||
base_provider: str = "anthropic"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class claude_v1_100k:
|
|
||||||
name: str = "claude-v1-100k"
|
|
||||||
base_provider: str = "anthropic"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class claude_v1:
|
|
||||||
name: str = "claude-v1"
|
|
||||||
base_provider: str = "anthropic"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class alpaca_7b:
|
|
||||||
name: str = "alpaca-7b"
|
|
||||||
base_provider: str = "replicate"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class stablelm_tuned_alpha_7b:
|
|
||||||
name: str = "stablelm-tuned-alpha-7b"
|
|
||||||
base_provider: str = "replicate"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class bloom:
|
|
||||||
name: str = "bloom"
|
|
||||||
base_provider: str = "huggingface"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class bloomz:
|
|
||||||
name: str = "bloomz"
|
|
||||||
base_provider: str = "huggingface"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class flan_t5_xxl:
|
|
||||||
name: str = "flan-t5-xxl"
|
|
||||||
base_provider: str = "huggingface"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class flan_ul2:
|
|
||||||
name: str = "flan-ul2"
|
|
||||||
base_provider: str = "huggingface"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class gpt_neox_20b:
|
|
||||||
name: str = "gpt-neox-20b"
|
|
||||||
base_provider: str = "huggingface"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class oasst_sft_4_pythia_12b_epoch_35:
|
|
||||||
name: str = "oasst-sft-4-pythia-12b-epoch-3.5"
|
|
||||||
base_provider: str = "huggingface"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class santacoder:
|
|
||||||
name: str = "santacoder"
|
|
||||||
base_provider: str = "huggingface"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class command_medium_nightly:
|
|
||||||
name: str = "command-medium-nightly"
|
|
||||||
base_provider: str = "cohere"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class command_xlarge_nightly:
|
|
||||||
name: str = "command-xlarge-nightly"
|
|
||||||
base_provider: str = "cohere"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class code_cushman_001:
|
|
||||||
name: str = "code-cushman-001"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class code_davinci_002:
|
|
||||||
name: str = "code-davinci-002"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class text_ada_001:
|
|
||||||
name: str = "text-ada-001"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class text_babbage_001:
|
|
||||||
name: str = "text-babbage-001"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class text_curie_001:
|
|
||||||
name: str = "text-curie-001"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class text_davinci_002:
|
|
||||||
name: str = "text-davinci-002"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class text_davinci_003:
|
|
||||||
name: str = "text-davinci-003"
|
|
||||||
base_provider: str = "openai"
|
|
||||||
best_provider: Provider.Provider = Provider.Vercel
|
|
||||||
|
|
||||||
class palm:
|
|
||||||
name: str = "palm2"
|
|
||||||
base_provider: str = "google"
|
|
||||||
best_provider: Provider.Provider = Provider.Bard
|
|
||||||
|
|
||||||
class falcon_40b:
|
|
||||||
name: str = "falcon-40b"
|
|
||||||
base_provider: str = "huggingface"
|
|
||||||
best_provider: Provider.Provider = Provider.H2o
|
|
||||||
|
|
||||||
class falcon_7b:
|
|
||||||
name: str = "falcon-7b"
|
|
||||||
base_provider: str = "huggingface"
|
|
||||||
best_provider: Provider.Provider = Provider.H2o
|
|
||||||
|
|
||||||
class llama_13b:
|
|
||||||
name: str = "llama-13b"
|
|
||||||
base_provider: str = "huggingface"
|
|
||||||
best_provider: Provider.Provider = Provider.H2o
|
|
||||||
|
|
||||||
|
|
||||||
class ModelUtils:
|
|
||||||
convert: dict = {
|
|
||||||
"gpt-3.5-turbo": Model.gpt_35_turbo,
|
|
||||||
"gpt-3.5-turbo-0613": Model.gpt_35_turbo_0613,
|
|
||||||
"gpt-3.5-turbo-0301": Model.gpt_35_turbo_0301,
|
|
||||||
"gpt-4": Model.gpt_4,
|
|
||||||
"gpt-4-0613": Model.gpt_4_0613,
|
|
||||||
"gpt-4-for-dev": Model.gpt_4_dev,
|
|
||||||
"gpt-3.5-turbo-16k": Model.gpt_35_turbo_16k,
|
|
||||||
"gpt-3.5-turbo-16k-0613": Model.gpt_35_turbo_16k_0613,
|
|
||||||
"claude-instant-v1-100k": Model.claude_instant_v1_100k,
|
|
||||||
"claude-v1-100k": Model.claude_v1_100k,
|
|
||||||
"claude-instant-v1": Model.claude_instant_v1,
|
|
||||||
"claude-v1": Model.claude_v1,
|
|
||||||
"alpaca-7b": Model.alpaca_7b,
|
|
||||||
"stablelm-tuned-alpha-7b": Model.stablelm_tuned_alpha_7b,
|
|
||||||
"bloom": Model.bloom,
|
|
||||||
"bloomz": Model.bloomz,
|
|
||||||
"flan-t5-xxl": Model.flan_t5_xxl,
|
|
||||||
"flan-ul2": Model.flan_ul2,
|
|
||||||
"gpt-neox-20b": Model.gpt_neox_20b,
|
|
||||||
"oasst-sft-4-pythia-12b-epoch-3.5": Model.oasst_sft_4_pythia_12b_epoch_35,
|
|
||||||
"santacoder": Model.santacoder,
|
|
||||||
"command-medium-nightly": Model.command_medium_nightly,
|
|
||||||
"command-xlarge-nightly": Model.command_xlarge_nightly,
|
|
||||||
"code-cushman-001": Model.code_cushman_001,
|
|
||||||
"code-davinci-002": Model.code_davinci_002,
|
|
||||||
"text-ada-001": Model.text_ada_001,
|
|
||||||
"text-babbage-001": Model.text_babbage_001,
|
|
||||||
"text-curie-001": Model.text_curie_001,
|
|
||||||
"text-davinci-002": Model.text_davinci_002,
|
|
||||||
"text-davinci-003": Model.text_davinci_003,
|
|
||||||
"palm2": Model.palm,
|
|
||||||
"palm": Model.palm,
|
|
||||||
"google": Model.palm,
|
|
||||||
"google-bard": Model.palm,
|
|
||||||
"google-palm": Model.palm,
|
|
||||||
"bard": Model.palm,
|
|
||||||
"falcon-40b": Model.falcon_40b,
|
|
||||||
"falcon-7b": Model.falcon_7b,
|
|
||||||
"llama-13b": Model.llama_13b,
|
|
||||||
}
|
|
@ -1,3 +0,0 @@
|
|||||||
from typing import NewType
|
|
||||||
|
|
||||||
sha256 = NewType("sha_256_hash", str)
|
|
@ -1,49 +0,0 @@
|
|||||||
import browser_cookie3
|
|
||||||
|
|
||||||
|
|
||||||
class Utils:
|
|
||||||
browsers = [
|
|
||||||
browser_cookie3.chrome, # 62.74% market share
|
|
||||||
browser_cookie3.safari, # 24.12% market share
|
|
||||||
browser_cookie3.firefox, # 4.56% market share
|
|
||||||
browser_cookie3.edge, # 2.85% market share
|
|
||||||
browser_cookie3.opera, # 1.69% market share
|
|
||||||
browser_cookie3.brave, # 0.96% market share
|
|
||||||
browser_cookie3.opera_gx, # 0.64% market share
|
|
||||||
browser_cookie3.vivaldi, # 0.32% market share
|
|
||||||
]
|
|
||||||
|
|
||||||
def get_cookies(domain: str, setName: str = None, setBrowser: str = False) -> dict:
|
|
||||||
cookies = {}
|
|
||||||
|
|
||||||
if setBrowser != False:
|
|
||||||
for browser in Utils.browsers:
|
|
||||||
if browser.__name__ == setBrowser:
|
|
||||||
try:
|
|
||||||
for c in browser(domain_name=domain):
|
|
||||||
if c.name not in cookies:
|
|
||||||
cookies = cookies | {c.name: c.value}
|
|
||||||
|
|
||||||
except Exception:
|
|
||||||
pass
|
|
||||||
|
|
||||||
else:
|
|
||||||
for browser in Utils.browsers:
|
|
||||||
try:
|
|
||||||
for c in browser(domain_name=domain):
|
|
||||||
if c.name not in cookies:
|
|
||||||
cookies = cookies | {c.name: c.value}
|
|
||||||
|
|
||||||
except Exception:
|
|
||||||
pass
|
|
||||||
|
|
||||||
if setName:
|
|
||||||
try:
|
|
||||||
return {setName: cookies[setName]}
|
|
||||||
|
|
||||||
except ValueError:
|
|
||||||
print(f"Error: could not find {setName} cookie in any browser.")
|
|
||||||
exit(1)
|
|
||||||
|
|
||||||
else:
|
|
||||||
return cookies
|
|
@ -1,7 +0,0 @@
|
|||||||
from g4f.active_providers import get_active_model_providers
|
|
||||||
|
|
||||||
working_providers = get_active_model_providers()
|
|
||||||
|
|
||||||
print("\nWorking providers by model:")
|
|
||||||
for model, providers in working_providers.items():
|
|
||||||
print(f"{model}: {', '.join(providers)}")
|
|
572
chat_gpt_microservice/git-clang-format.py
Normal file
@ -0,0 +1,572 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
#
|
||||||
|
# ===- git-clang-format - ClangFormat Git Integration ---------*- python -*--===#
|
||||||
|
#
|
||||||
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||||
|
# See https://llvm.org/LICENSE.txt for license information.
|
||||||
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||||
|
#
|
||||||
|
# ===------------------------------------------------------------------------===#
|
||||||
|
|
||||||
|
r"""
|
||||||
|
clang-format git integration
|
||||||
|
============================
|
||||||
|
|
||||||
|
This file provides a clang-format integration for git. Put it somewhere in your
|
||||||
|
path and ensure that it is executable. Then, "git clang-format" will invoke
|
||||||
|
clang-format on the changes in current files or a specific commit.
|
||||||
|
|
||||||
|
For further details, run:
|
||||||
|
git clang-format -h
|
||||||
|
|
||||||
|
Requires Python 2.7 or Python 3
|
||||||
|
"""
|
||||||
|
|
||||||
|
from __future__ import absolute_import, division, print_function
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import collections
|
||||||
|
import contextlib
|
||||||
|
import errno
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
|
||||||
|
usage = 'git clang-format [OPTIONS] [<commit>] [<commit>] [--] [<file>...]'
|
||||||
|
|
||||||
|
desc = '''
|
||||||
|
If zero or one commits are given, run clang-format on all lines that differ
|
||||||
|
between the working directory and <commit>, which defaults to HEAD. Changes are
|
||||||
|
only applied to the working directory.
|
||||||
|
|
||||||
|
If two commits are given (requires --diff), run clang-format on all lines in the
|
||||||
|
second <commit> that differ from the first <commit>.
|
||||||
|
|
||||||
|
The following git-config settings set the default of the corresponding option:
|
||||||
|
clangFormat.binary
|
||||||
|
clangFormat.commit
|
||||||
|
clangFormat.extension
|
||||||
|
clangFormat.style
|
||||||
|
'''
|
||||||
|
|
||||||
|
# Name of the temporary index file in which save the output of clang-format.
|
||||||
|
# This file is created within the .git directory.
|
||||||
|
temp_index_basename = 'clang-format-index'
|
||||||
|
|
||||||
|
|
||||||
|
Range = collections.namedtuple('Range', 'start, count')
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
config = load_git_config()
|
||||||
|
|
||||||
|
# In order to keep '--' yet allow options after positionals, we need to
|
||||||
|
# check for '--' ourselves. (Setting nargs='*' throws away the '--', while
|
||||||
|
# nargs=argparse.REMAINDER disallows options after positionals.)
|
||||||
|
argv = sys.argv[1:]
|
||||||
|
try:
|
||||||
|
idx = argv.index('--')
|
||||||
|
except ValueError:
|
||||||
|
dash_dash = []
|
||||||
|
else:
|
||||||
|
dash_dash = argv[idx:]
|
||||||
|
argv = argv[:idx]
|
||||||
|
|
||||||
|
default_extensions = ','.join(
|
||||||
|
[
|
||||||
|
# From clang/lib/Frontend/FrontendOptions.cpp, all lower case
|
||||||
|
'c',
|
||||||
|
'h', # C
|
||||||
|
'm', # ObjC
|
||||||
|
'mm', # ObjC++
|
||||||
|
'cc',
|
||||||
|
'cp',
|
||||||
|
'cpp',
|
||||||
|
'c++',
|
||||||
|
'cxx',
|
||||||
|
'hh',
|
||||||
|
'hpp',
|
||||||
|
'hxx', # C++
|
||||||
|
'cu', # CUDA
|
||||||
|
# Other languages that clang-format supports
|
||||||
|
'proto',
|
||||||
|
'protodevel', # Protocol Buffers
|
||||||
|
'java', # Java
|
||||||
|
'js', # JavaScript
|
||||||
|
'ts', # TypeScript
|
||||||
|
'cs', # C Sharp
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
p = argparse.ArgumentParser(usage=usage, formatter_class=argparse.RawDescriptionHelpFormatter, description=desc)
|
||||||
|
p.add_argument('--binary', default=config.get('clangformat.binary', 'clang-format'), help='path to clang-format'),
|
||||||
|
p.add_argument(
|
||||||
|
'--commit', default=config.get('clangformat.commit', 'HEAD'), help='default commit to use if none is specified'
|
||||||
|
),
|
||||||
|
p.add_argument('--diff', action='store_true', help='print a diff instead of applying the changes')
|
||||||
|
p.add_argument(
|
||||||
|
'--extensions',
|
||||||
|
default=config.get('clangformat.extensions', default_extensions),
|
||||||
|
help=('comma-separated list of file extensions to format, ' 'excluding the period and case-insensitive'),
|
||||||
|
),
|
||||||
|
p.add_argument('-f', '--force', action='store_true', help='allow changes to unstaged files')
|
||||||
|
p.add_argument('-p', '--patch', action='store_true', help='select hunks interactively')
|
||||||
|
p.add_argument('-q', '--quiet', action='count', default=0, help='print less information')
|
||||||
|
p.add_argument('--style', default=config.get('clangformat.style', None), help='passed to clang-format'),
|
||||||
|
p.add_argument('-v', '--verbose', action='count', default=0, help='print extra information')
|
||||||
|
# We gather all the remaining positional arguments into 'args' since we need
|
||||||
|
# to use some heuristics to determine whether or not <commit> was present.
|
||||||
|
# However, to print pretty messages, we make use of metavar and help.
|
||||||
|
p.add_argument('args', nargs='*', metavar='<commit>', help='revision from which to compute the diff')
|
||||||
|
p.add_argument(
|
||||||
|
'ignored', nargs='*', metavar='<file>...', help='if specified, only consider differences in these files'
|
||||||
|
)
|
||||||
|
opts = p.parse_args(argv)
|
||||||
|
|
||||||
|
opts.verbose -= opts.quiet
|
||||||
|
del opts.quiet
|
||||||
|
|
||||||
|
commits, files = interpret_args(opts.args, dash_dash, opts.commit)
|
||||||
|
if len(commits) > 1:
|
||||||
|
if not opts.diff:
|
||||||
|
die('--diff is required when two commits are given')
|
||||||
|
else:
|
||||||
|
if len(commits) > 2:
|
||||||
|
die('at most two commits allowed; %d given' % len(commits))
|
||||||
|
changed_lines = compute_diff_and_extract_lines(commits, files)
|
||||||
|
if opts.verbose >= 1:
|
||||||
|
ignored_files = set(changed_lines)
|
||||||
|
filter_by_extension(changed_lines, opts.extensions.lower().split(','))
|
||||||
|
if opts.verbose >= 1:
|
||||||
|
ignored_files.difference_update(changed_lines)
|
||||||
|
if ignored_files:
|
||||||
|
print('Ignoring changes in the following files (wrong extension):')
|
||||||
|
for filename in ignored_files:
|
||||||
|
print(' %s' % filename)
|
||||||
|
if changed_lines:
|
||||||
|
print('Running clang-format on the following files:')
|
||||||
|
for filename in changed_lines:
|
||||||
|
print(' %s' % filename)
|
||||||
|
if not changed_lines:
|
||||||
|
print('no modified files to format')
|
||||||
|
return
|
||||||
|
# The computed diff outputs absolute paths, so we must cd before accessing
|
||||||
|
# those files.
|
||||||
|
cd_to_toplevel()
|
||||||
|
if len(commits) > 1:
|
||||||
|
old_tree = commits[1]
|
||||||
|
new_tree = run_clang_format_and_save_to_tree(
|
||||||
|
changed_lines, revision=commits[1], binary=opts.binary, style=opts.style
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
old_tree = create_tree_from_workdir(changed_lines)
|
||||||
|
new_tree = run_clang_format_and_save_to_tree(changed_lines, binary=opts.binary, style=opts.style)
|
||||||
|
if opts.verbose >= 1:
|
||||||
|
print('old tree: %s' % old_tree)
|
||||||
|
print('new tree: %s' % new_tree)
|
||||||
|
if old_tree == new_tree:
|
||||||
|
if opts.verbose >= 0:
|
||||||
|
print('clang-format did not modify any files')
|
||||||
|
elif opts.diff:
|
||||||
|
print_diff(old_tree, new_tree)
|
||||||
|
else:
|
||||||
|
changed_files = apply_changes(old_tree, new_tree, force=opts.force, patch_mode=opts.patch)
|
||||||
|
if (opts.verbose >= 0 and not opts.patch) or opts.verbose >= 1:
|
||||||
|
print('changed files:')
|
||||||
|
for filename in changed_files:
|
||||||
|
print(' %s' % filename)
|
||||||
|
|
||||||
|
|
||||||
|
def load_git_config(non_string_options=None):
|
||||||
|
"""Return the git configuration as a dictionary.
|
||||||
|
|
||||||
|
All options are assumed to be strings unless in `non_string_options`, in which
|
||||||
|
is a dictionary mapping option name (in lower case) to either "--bool" or
|
||||||
|
"--int"."""
|
||||||
|
if non_string_options is None:
|
||||||
|
non_string_options = {}
|
||||||
|
out = {}
|
||||||
|
for entry in run('git', 'config', '--list', '--null').split('\0'):
|
||||||
|
if entry:
|
||||||
|
name, value = entry.split('\n', 1)
|
||||||
|
if name in non_string_options:
|
||||||
|
value = run('git', 'config', non_string_options[name], name)
|
||||||
|
out[name] = value
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def interpret_args(args, dash_dash, default_commit):
|
||||||
|
"""Interpret `args` as "[commits] [--] [files]" and return (commits, files).
|
||||||
|
|
||||||
|
It is assumed that "--" and everything that follows has been removed from
|
||||||
|
args and placed in `dash_dash`.
|
||||||
|
|
||||||
|
If "--" is present (i.e., `dash_dash` is non-empty), the arguments to its
|
||||||
|
left (if present) are taken as commits. Otherwise, the arguments are checked
|
||||||
|
from left to right if they are commits or files. If commits are not given,
|
||||||
|
a list with `default_commit` is used."""
|
||||||
|
if dash_dash:
|
||||||
|
if len(args) == 0:
|
||||||
|
commits = [default_commit]
|
||||||
|
else:
|
||||||
|
commits = args
|
||||||
|
for commit in commits:
|
||||||
|
object_type = get_object_type(commit)
|
||||||
|
if object_type not in ('commit', 'tag'):
|
||||||
|
if object_type is None:
|
||||||
|
die("'%s' is not a commit" % commit)
|
||||||
|
else:
|
||||||
|
die("'%s' is a %s, but a commit was expected" % (commit, object_type))
|
||||||
|
files = dash_dash[1:]
|
||||||
|
elif args:
|
||||||
|
commits = []
|
||||||
|
while args:
|
||||||
|
if not disambiguate_revision(args[0]):
|
||||||
|
break
|
||||||
|
commits.append(args.pop(0))
|
||||||
|
if not commits:
|
||||||
|
commits = [default_commit]
|
||||||
|
files = args
|
||||||
|
else:
|
||||||
|
commits = [default_commit]
|
||||||
|
files = []
|
||||||
|
return commits, files
|
||||||
|
|
||||||
|
|
||||||
|
def disambiguate_revision(value):
|
||||||
|
"""Returns True if `value` is a revision, False if it is a file, or dies."""
|
||||||
|
# If `value` is ambiguous (neither a commit nor a file), the following
|
||||||
|
# command will die with an appropriate error message.
|
||||||
|
run('git', 'rev-parse', value, verbose=False)
|
||||||
|
object_type = get_object_type(value)
|
||||||
|
if object_type is None:
|
||||||
|
return False
|
||||||
|
if object_type in ('commit', 'tag'):
|
||||||
|
return True
|
||||||
|
die('`%s` is a %s, but a commit or filename was expected' % (value, object_type))
|
||||||
|
|
||||||
|
|
||||||
|
def get_object_type(value):
|
||||||
|
"""Returns a string description of an object's type, or None if it is not
|
||||||
|
a valid git object."""
|
||||||
|
cmd = ['git', 'cat-file', '-t', value]
|
||||||
|
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||||
|
stdout, stderr = p.communicate()
|
||||||
|
if p.returncode != 0:
|
||||||
|
return None
|
||||||
|
return convert_string(stdout.strip())
|
||||||
|
|
||||||
|
|
||||||
|
def compute_diff_and_extract_lines(commits, files):
|
||||||
|
"""Calls compute_diff() followed by extract_lines()."""
|
||||||
|
diff_process = compute_diff(commits, files)
|
||||||
|
changed_lines = extract_lines(diff_process.stdout)
|
||||||
|
diff_process.stdout.close()
|
||||||
|
diff_process.wait()
|
||||||
|
if diff_process.returncode != 0:
|
||||||
|
# Assume error was already printed to stderr.
|
||||||
|
sys.exit(2)
|
||||||
|
return changed_lines
|
||||||
|
|
||||||
|
|
||||||
|
def compute_diff(commits, files):
|
||||||
|
"""Return a subprocess object producing the diff from `commits`.
|
||||||
|
|
||||||
|
The return value's `stdin` file object will produce a patch with the
|
||||||
|
differences between the working directory and the first commit if a single
|
||||||
|
one was specified, or the difference between both specified commits, filtered
|
||||||
|
on `files` (if non-empty). Zero context lines are used in the patch."""
|
||||||
|
git_tool = 'diff-index'
|
||||||
|
if len(commits) > 1:
|
||||||
|
git_tool = 'diff-tree'
|
||||||
|
cmd = ['git', git_tool, '-p', '-U0'] + commits + ['--']
|
||||||
|
cmd.extend(files)
|
||||||
|
p = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
|
||||||
|
p.stdin.close()
|
||||||
|
return p
|
||||||
|
|
||||||
|
|
||||||
|
def extract_lines(patch_file):
|
||||||
|
"""Extract the changed lines in `patch_file`.
|
||||||
|
|
||||||
|
The return value is a dictionary mapping filename to a list of (start_line,
|
||||||
|
line_count) pairs.
|
||||||
|
|
||||||
|
The input must have been produced with ``-U0``, meaning unidiff format with
|
||||||
|
zero lines of context. The return value is a dict mapping filename to a
|
||||||
|
list of line `Range`s."""
|
||||||
|
matches = {}
|
||||||
|
for line in patch_file:
|
||||||
|
line = convert_string(line)
|
||||||
|
match = re.search(r'^\+\+\+\ [^/]+/(.*)', line)
|
||||||
|
if match:
|
||||||
|
filename = match.group(1).rstrip('\r\n')
|
||||||
|
match = re.search(r'^@@ -[0-9,]+ \+(\d+)(,(\d+))?', line)
|
||||||
|
if match:
|
||||||
|
start_line = int(match.group(1))
|
||||||
|
line_count = 1
|
||||||
|
if match.group(3):
|
||||||
|
line_count = int(match.group(3))
|
||||||
|
if line_count > 0:
|
||||||
|
matches.setdefault(filename, []).append(Range(start_line, line_count))
|
||||||
|
return matches
|
||||||
|
|
||||||
|
|
||||||
|
def filter_by_extension(dictionary, allowed_extensions):
|
||||||
|
"""Delete every key in `dictionary` that doesn't have an allowed extension.
|
||||||
|
|
||||||
|
`allowed_extensions` must be a collection of lowercase file extensions,
|
||||||
|
excluding the period."""
|
||||||
|
allowed_extensions = frozenset(allowed_extensions)
|
||||||
|
for filename in list(dictionary.keys()):
|
||||||
|
base_ext = filename.rsplit('.', 1)
|
||||||
|
if len(base_ext) == 1 and '' in allowed_extensions:
|
||||||
|
continue
|
||||||
|
if len(base_ext) == 1 or base_ext[1].lower() not in allowed_extensions:
|
||||||
|
del dictionary[filename]
|
||||||
|
|
||||||
|
|
||||||
|
def cd_to_toplevel():
|
||||||
|
"""Change to the top level of the git repository."""
|
||||||
|
toplevel = run('git', 'rev-parse', '--show-toplevel')
|
||||||
|
os.chdir(toplevel)
|
||||||
|
|
||||||
|
|
||||||
|
def create_tree_from_workdir(filenames):
|
||||||
|
"""Create a new git tree with the given files from the working directory.
|
||||||
|
|
||||||
|
Returns the object ID (SHA-1) of the created tree."""
|
||||||
|
return create_tree(filenames, '--stdin')
|
||||||
|
|
||||||
|
|
||||||
|
def run_clang_format_and_save_to_tree(changed_lines, revision=None, binary='clang-format', style=None):
|
||||||
|
"""Run clang-format on each file and save the result to a git tree.
|
||||||
|
|
||||||
|
Returns the object ID (SHA-1) of the created tree."""
|
||||||
|
|
||||||
|
def iteritems(container):
|
||||||
|
try:
|
||||||
|
return container.iteritems() # Python 2
|
||||||
|
except AttributeError:
|
||||||
|
return container.items() # Python 3
|
||||||
|
|
||||||
|
def index_info_generator():
|
||||||
|
for filename, line_ranges in iteritems(changed_lines):
|
||||||
|
if revision:
|
||||||
|
git_metadata_cmd = [
|
||||||
|
'git',
|
||||||
|
'ls-tree',
|
||||||
|
'%s:%s' % (revision, os.path.dirname(filename)),
|
||||||
|
os.path.basename(filename),
|
||||||
|
]
|
||||||
|
git_metadata = subprocess.Popen(git_metadata_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
|
||||||
|
stdout = git_metadata.communicate()[0]
|
||||||
|
mode = oct(int(stdout.split()[0], 8))
|
||||||
|
else:
|
||||||
|
mode = oct(os.stat(filename).st_mode)
|
||||||
|
# Adjust python3 octal format so that it matches what git expects
|
||||||
|
if mode.startswith('0o'):
|
||||||
|
mode = '0' + mode[2:]
|
||||||
|
blob_id = clang_format_to_blob(filename, line_ranges, revision=revision, binary=binary, style=style)
|
||||||
|
yield '%s %s\t%s' % (mode, blob_id, filename)
|
||||||
|
|
||||||
|
return create_tree(index_info_generator(), '--index-info')
|
||||||
|
|
||||||
|
|
||||||
|
def create_tree(input_lines, mode):
|
||||||
|
"""Create a tree object from the given input.
|
||||||
|
|
||||||
|
If mode is '--stdin', it must be a list of filenames. If mode is
|
||||||
|
'--index-info' is must be a list of values suitable for "git update-index
|
||||||
|
--index-info", such as "<mode> <SP> <sha1> <TAB> <filename>". Any other mode
|
||||||
|
is invalid."""
|
||||||
|
assert mode in ('--stdin', '--index-info')
|
||||||
|
cmd = ['git', 'update-index', '--add', '-z', mode]
|
||||||
|
with temporary_index_file():
|
||||||
|
p = subprocess.Popen(cmd, stdin=subprocess.PIPE)
|
||||||
|
for line in input_lines:
|
||||||
|
p.stdin.write(to_bytes('%s\0' % line))
|
||||||
|
p.stdin.close()
|
||||||
|
if p.wait() != 0:
|
||||||
|
die('`%s` failed' % ' '.join(cmd))
|
||||||
|
tree_id = run('git', 'write-tree')
|
||||||
|
return tree_id
|
||||||
|
|
||||||
|
|
||||||
|
def clang_format_to_blob(filename, line_ranges, revision=None, binary='clang-format', style=None):
|
||||||
|
"""Run clang-format on the given file and save the result to a git blob.
|
||||||
|
|
||||||
|
Runs on the file in `revision` if not None, or on the file in the working
|
||||||
|
directory if `revision` is None.
|
||||||
|
|
||||||
|
Returns the object ID (SHA-1) of the created blob."""
|
||||||
|
clang_format_cmd = [binary]
|
||||||
|
if style:
|
||||||
|
clang_format_cmd.extend(['-style=' + style])
|
||||||
|
clang_format_cmd.extend(
|
||||||
|
['-lines=%s:%s' % (start_line, start_line + line_count - 1) for start_line, line_count in line_ranges]
|
||||||
|
)
|
||||||
|
if revision:
|
||||||
|
clang_format_cmd.extend(['-assume-filename=' + filename])
|
||||||
|
git_show_cmd = ['git', 'cat-file', 'blob', '%s:%s' % (revision, filename)]
|
||||||
|
git_show = subprocess.Popen(git_show_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
|
||||||
|
git_show.stdin.close()
|
||||||
|
clang_format_stdin = git_show.stdout
|
||||||
|
else:
|
||||||
|
clang_format_cmd.extend([filename])
|
||||||
|
git_show = None
|
||||||
|
clang_format_stdin = subprocess.PIPE
|
||||||
|
try:
|
||||||
|
clang_format = subprocess.Popen(clang_format_cmd, stdin=clang_format_stdin, stdout=subprocess.PIPE)
|
||||||
|
if clang_format_stdin == subprocess.PIPE:
|
||||||
|
clang_format_stdin = clang_format.stdin
|
||||||
|
except OSError as e:
|
||||||
|
if e.errno == errno.ENOENT:
|
||||||
|
die('cannot find executable "%s"' % binary)
|
||||||
|
else:
|
||||||
|
raise
|
||||||
|
clang_format_stdin.close()
|
||||||
|
hash_object_cmd = ['git', 'hash-object', '-w', '--path=' + filename, '--stdin']
|
||||||
|
hash_object = subprocess.Popen(hash_object_cmd, stdin=clang_format.stdout, stdout=subprocess.PIPE)
|
||||||
|
clang_format.stdout.close()
|
||||||
|
stdout = hash_object.communicate()[0]
|
||||||
|
if hash_object.returncode != 0:
|
||||||
|
die('`%s` failed' % ' '.join(hash_object_cmd))
|
||||||
|
if clang_format.wait() != 0:
|
||||||
|
die('`%s` failed' % ' '.join(clang_format_cmd))
|
||||||
|
if git_show and git_show.wait() != 0:
|
||||||
|
die('`%s` failed' % ' '.join(git_show_cmd))
|
||||||
|
return convert_string(stdout).rstrip('\r\n')
|
||||||
|
|
||||||
|
|
||||||
|
@contextlib.contextmanager
|
||||||
|
def temporary_index_file(tree=None):
|
||||||
|
"""Context manager for setting GIT_INDEX_FILE to a temporary file and deleting
|
||||||
|
the file afterward."""
|
||||||
|
index_path = create_temporary_index(tree)
|
||||||
|
old_index_path = os.environ.get('GIT_INDEX_FILE')
|
||||||
|
os.environ['GIT_INDEX_FILE'] = index_path
|
||||||
|
try:
|
||||||
|
yield
|
||||||
|
finally:
|
||||||
|
if old_index_path is None:
|
||||||
|
del os.environ['GIT_INDEX_FILE']
|
||||||
|
else:
|
||||||
|
os.environ['GIT_INDEX_FILE'] = old_index_path
|
||||||
|
os.remove(index_path)
|
||||||
|
|
||||||
|
|
||||||
|
def create_temporary_index(tree=None):
|
||||||
|
"""Create a temporary index file and return the created file's path.
|
||||||
|
|
||||||
|
If `tree` is not None, use that as the tree to read in. Otherwise, an
|
||||||
|
empty index is created."""
|
||||||
|
gitdir = run('git', 'rev-parse', '--git-dir')
|
||||||
|
path = os.path.join(gitdir, temp_index_basename)
|
||||||
|
if tree is None:
|
||||||
|
tree = '--empty'
|
||||||
|
run('git', 'read-tree', '--index-output=' + path, tree)
|
||||||
|
return path
|
||||||
|
|
||||||
|
|
||||||
|
def print_diff(old_tree, new_tree):
|
||||||
|
"""Print the diff between the two trees to stdout."""
|
||||||
|
# We use the porcelain 'diff' and not plumbing 'diff-tree' because the output
|
||||||
|
# is expected to be viewed by the user, and only the former does nice things
|
||||||
|
# like color and pagination.
|
||||||
|
#
|
||||||
|
# We also only print modified files since `new_tree` only contains the files
|
||||||
|
# that were modified, so unmodified files would show as deleted without the
|
||||||
|
# filter.
|
||||||
|
subprocess.check_call(['git', 'diff', '--diff-filter=M', old_tree, new_tree, '--'])
|
||||||
|
|
||||||
|
|
||||||
|
def apply_changes(old_tree, new_tree, force=False, patch_mode=False):
|
||||||
|
"""Apply the changes in `new_tree` to the working directory.
|
||||||
|
|
||||||
|
Bails if there are local changes in those files and not `force`. If
|
||||||
|
`patch_mode`, runs `git checkout --patch` to select hunks interactively."""
|
||||||
|
changed_files = (
|
||||||
|
run('git', 'diff-tree', '--diff-filter=M', '-r', '-z', '--name-only', old_tree, new_tree)
|
||||||
|
.rstrip('\0')
|
||||||
|
.split('\0')
|
||||||
|
)
|
||||||
|
if not force:
|
||||||
|
unstaged_files = run('git', 'diff-files', '--name-status', *changed_files)
|
||||||
|
if unstaged_files:
|
||||||
|
print('The following files would be modified but ' 'have unstaged changes:', file=sys.stderr)
|
||||||
|
print(unstaged_files, file=sys.stderr)
|
||||||
|
print('Please commit, stage, or stash them first.', file=sys.stderr)
|
||||||
|
sys.exit(2)
|
||||||
|
if patch_mode:
|
||||||
|
# In patch mode, we could just as well create an index from the new tree
|
||||||
|
# and checkout from that, but then the user will be presented with a
|
||||||
|
# message saying "Discard ... from worktree". Instead, we use the old
|
||||||
|
# tree as the index and checkout from new_tree, which gives the slightly
|
||||||
|
# better message, "Apply ... to index and worktree". This is not quite
|
||||||
|
# right, since it won't be applied to the user's index, but oh well.
|
||||||
|
with temporary_index_file(old_tree):
|
||||||
|
subprocess.check_call(['git', 'checkout', '--patch', new_tree])
|
||||||
|
else:
|
||||||
|
with temporary_index_file(new_tree):
|
||||||
|
run('git', 'checkout-index', '-a', '-f')
|
||||||
|
return changed_files
|
||||||
|
|
||||||
|
|
||||||
|
def run(*args, **kwargs):
|
||||||
|
stdin = kwargs.pop('stdin', '')
|
||||||
|
verbose = kwargs.pop('verbose', True)
|
||||||
|
strip = kwargs.pop('strip', True)
|
||||||
|
for name in kwargs:
|
||||||
|
raise TypeError("run() got an unexpected keyword argument '%s'" % name)
|
||||||
|
p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE)
|
||||||
|
stdout, stderr = p.communicate(input=stdin)
|
||||||
|
|
||||||
|
stdout = convert_string(stdout)
|
||||||
|
stderr = convert_string(stderr)
|
||||||
|
|
||||||
|
if p.returncode == 0:
|
||||||
|
if stderr:
|
||||||
|
if verbose:
|
||||||
|
print('`%s` printed to stderr:' % ' '.join(args), file=sys.stderr)
|
||||||
|
print(stderr.rstrip(), file=sys.stderr)
|
||||||
|
if strip:
|
||||||
|
stdout = stdout.rstrip('\r\n')
|
||||||
|
return stdout
|
||||||
|
if verbose:
|
||||||
|
print('`%s` returned %s' % (' '.join(args), p.returncode), file=sys.stderr)
|
||||||
|
if stderr:
|
||||||
|
print(stderr.rstrip(), file=sys.stderr)
|
||||||
|
sys.exit(2)
|
||||||
|
|
||||||
|
|
||||||
|
def die(message):
|
||||||
|
print('error:', message, file=sys.stderr)
|
||||||
|
sys.exit(2)
|
||||||
|
|
||||||
|
|
||||||
|
def to_bytes(str_input):
|
||||||
|
# Encode to UTF-8 to get binary data.
|
||||||
|
if isinstance(str_input, bytes):
|
||||||
|
return str_input
|
||||||
|
return str_input.encode('utf-8')
|
||||||
|
|
||||||
|
|
||||||
|
def to_string(bytes_input):
|
||||||
|
if isinstance(bytes_input, str):
|
||||||
|
return bytes_input
|
||||||
|
return bytes_input.encode('utf-8')
|
||||||
|
|
||||||
|
|
||||||
|
def convert_string(bytes_input):
|
||||||
|
try:
|
||||||
|
return to_string(bytes_input.decode('utf-8'))
|
||||||
|
except AttributeError: # 'str' object has no attribute 'decode'.
|
||||||
|
return str(bytes_input)
|
||||||
|
except UnicodeError:
|
||||||
|
return str(bytes_input)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
19
chat_gpt_microservice/include/cfg.h
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <yaml_cpp_struct.hpp>
|
||||||
|
|
||||||
|
struct Config {
|
||||||
|
std::string client_root_path;
|
||||||
|
std::size_t interval{300};
|
||||||
|
std::size_t work_thread_num{8};
|
||||||
|
std::string host{"0.0.0.0"};
|
||||||
|
std::string port{"8858"};
|
||||||
|
std::string chat_path{"/chat"};
|
||||||
|
std::vector<std::string> providers;
|
||||||
|
bool enable_proxy;
|
||||||
|
std::string http_proxy;
|
||||||
|
std::string api_key;
|
||||||
|
std::vector<std::string> ip_white_list;
|
||||||
|
};
|
||||||
|
YCS_ADD_STRUCT(Config, client_root_path, interval, work_thread_num, host, port, chat_path, providers, enable_proxy,
|
||||||
|
http_proxy, api_key, ip_white_list)
|
48
chat_gpt_microservice/include/free_gpt.h
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <expected>
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
#include <boost/asio/awaitable.hpp>
|
||||||
|
#include <boost/asio/experimental/channel.hpp>
|
||||||
|
#include <boost/asio/thread_pool.hpp>
|
||||||
|
#include <boost/beast.hpp>
|
||||||
|
#include <boost/beast/ssl.hpp>
|
||||||
|
#include <nlohmann/json.hpp>
|
||||||
|
|
||||||
|
#include "cfg.h"
|
||||||
|
|
||||||
|
class FreeGpt final {
|
||||||
|
public:
|
||||||
|
using Channel = boost::asio::experimental::channel<void(boost::system::error_code, std::string)>;
|
||||||
|
|
||||||
|
FreeGpt(Config&);
|
||||||
|
|
||||||
|
boost::asio::awaitable<void> aiTianhu(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> aiTianhuSpace(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> deepAi(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> aiChat(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> chatGptAi(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> weWordle(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> acytoo(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> openAi(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> h2o(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> yqcloud(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> huggingChat(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> you(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> binjie(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> codeLinkAva(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> chatBase(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> aivvm(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> ylokh(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> vitalentum(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> gptGo(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
boost::asio::awaitable<void> aibn(std::shared_ptr<Channel>, nlohmann::json);
|
||||||
|
|
||||||
|
private:
|
||||||
|
boost::asio::awaitable<std::expected<boost::beast::ssl_stream<boost::beast::tcp_stream>, std::string>>
|
||||||
|
createHttpClient(boost::asio::ssl::context&, std::string_view /* host */, std::string_view /* port */);
|
||||||
|
|
||||||
|
Config& m_cfg;
|
||||||
|
std::shared_ptr<boost::asio::thread_pool> m_thread_pool_ptr;
|
||||||
|
};
|
103
chat_gpt_microservice/include/helper.hpp
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <list>
|
||||||
|
#include <thread>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include <boost/asio.hpp>
|
||||||
|
#include <boost/uuid/uuid.hpp>
|
||||||
|
#include <boost/uuid/uuid_generators.hpp>
|
||||||
|
#include <boost/uuid/uuid_io.hpp>
|
||||||
|
|
||||||
|
constexpr auto use_nothrow_awaitable = boost::asio::as_tuple(boost::asio::use_awaitable);
|
||||||
|
|
||||||
|
class IoContextPool final {
|
||||||
|
public:
|
||||||
|
explicit IoContextPool(std::size_t);
|
||||||
|
|
||||||
|
void start();
|
||||||
|
void stop();
|
||||||
|
|
||||||
|
boost::asio::io_context& getIoContext();
|
||||||
|
|
||||||
|
private:
|
||||||
|
std::vector<std::shared_ptr<boost::asio::io_context>> m_io_contexts;
|
||||||
|
std::list<boost::asio::any_io_executor> m_work;
|
||||||
|
std::size_t m_next_io_context;
|
||||||
|
std::vector<std::jthread> m_threads;
|
||||||
|
};
|
||||||
|
|
||||||
|
inline IoContextPool::IoContextPool(std::size_t pool_size) : m_next_io_context(0) {
|
||||||
|
if (pool_size == 0)
|
||||||
|
throw std::runtime_error("IoContextPool size is 0");
|
||||||
|
for (std::size_t i = 0; i < pool_size; ++i) {
|
||||||
|
auto io_context_ptr = std::make_shared<boost::asio::io_context>();
|
||||||
|
m_io_contexts.emplace_back(io_context_ptr);
|
||||||
|
m_work.emplace_back(
|
||||||
|
boost::asio::require(io_context_ptr->get_executor(), boost::asio::execution::outstanding_work.tracked));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
inline void IoContextPool::start() {
|
||||||
|
for (auto& context : m_io_contexts)
|
||||||
|
m_threads.emplace_back(std::jthread([&] { context->run(); }));
|
||||||
|
}
|
||||||
|
|
||||||
|
inline void IoContextPool::stop() {
|
||||||
|
for (auto& context_ptr : m_io_contexts)
|
||||||
|
context_ptr->stop();
|
||||||
|
}
|
||||||
|
|
||||||
|
inline boost::asio::io_context& IoContextPool::getIoContext() {
|
||||||
|
boost::asio::io_context& io_context = *m_io_contexts[m_next_io_context];
|
||||||
|
++m_next_io_context;
|
||||||
|
if (m_next_io_context == m_io_contexts.size())
|
||||||
|
m_next_io_context = 0;
|
||||||
|
return io_context;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline boost::asio::awaitable<void> timeout(std::chrono::seconds duration) {
|
||||||
|
auto now = std::chrono::steady_clock::now() + duration;
|
||||||
|
boost::asio::steady_timer timer(co_await boost::asio::this_coro::executor);
|
||||||
|
timer.expires_at(now);
|
||||||
|
[[maybe_unused]] auto [ec] = co_await timer.async_wait(boost::asio::as_tuple(boost::asio::use_awaitable));
|
||||||
|
co_return;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename... Args>
|
||||||
|
inline auto getEnv(Args&&... args) {
|
||||||
|
auto impl = []<std::size_t... I>(auto&& tp, std::index_sequence<I...>) {
|
||||||
|
auto func = [](std::string_view env_name) {
|
||||||
|
const char* env = std::getenv(env_name.data());
|
||||||
|
if (env == nullptr)
|
||||||
|
return std::string{};
|
||||||
|
return std::string{env};
|
||||||
|
};
|
||||||
|
return std::make_tuple(func(std::get<I>(tp))...);
|
||||||
|
};
|
||||||
|
return impl(std::forward_as_tuple(args...), std::index_sequence_for<Args...>{});
|
||||||
|
}
|
||||||
|
|
||||||
|
class ScopeExit {
|
||||||
|
public:
|
||||||
|
ScopeExit(const ScopeExit&) = delete;
|
||||||
|
ScopeExit& operator=(const ScopeExit&) = delete;
|
||||||
|
|
||||||
|
template <typename Callable>
|
||||||
|
explicit ScopeExit(Callable&& call) : m_call(std::forward<Callable>(call)) {}
|
||||||
|
|
||||||
|
~ScopeExit() {
|
||||||
|
if (m_call)
|
||||||
|
m_call();
|
||||||
|
}
|
||||||
|
|
||||||
|
void clear() { m_call = decltype(m_call)(); }
|
||||||
|
|
||||||
|
private:
|
||||||
|
std::function<void()> m_call;
|
||||||
|
};
|
||||||
|
|
||||||
|
inline std::string createUuidString() {
|
||||||
|
static thread_local boost::uuids::random_generator gen;
|
||||||
|
return boost::uuids::to_string(gen());
|
||||||
|
}
|